remote sensing

Article

Composite Style Pixel and Point Convolution-Based Deep
Fusion Neural Network Architecture for the Semantic
Segmentation of Hyperspectral and Lidar Data

Kevin T. Decker 123*

check for
updates

Citation: Decker, K.T.; Borghetti, B.J.
Composite Style Pixel and Point
Convolution-Based Deep Fusion
Neural Network Architecture for the
Semantic Segmentation of
Hyperspectral and Lidar Data.
Remote Sens. 2022, 14, 2113.

https:/ /doi.org/10.3390/rs14092113

Academic Editors: José Manuel

Fonseca and André Damas Mora

Received: 18 March 2022
Accepted: 25 April 2022
Published: 28 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Brett J. Borghetti !

Air Force Institute of Technology, Department of Electrical and Computer Engineering, 2950 Hobson Way,
Wright Patterson AFB, OH 45433, USA; brett.borghetti@afit.edu

Air Force Research Laboratory, Multispectral Sensing and Detection Division, LADAR Technology Branch,
Wright Patterson AFB, OH 45433, USA

3 Defense Engineering Corporation (DEC), Beavercreek, OH 45434, USA

Correspondence: kevindckr@gmail.com

Abstract: Multimodal hyperspectral and lidar data sets provide complementary spectral and struc-
tural data. Joint processing and exploitation to produce semantically labeled pixel maps through
semantic segmentation has proven useful for a variety of decision tasks. In this work, we identify
two areas of improvement over previous approaches and present a proof of concept network im-
plementing these improvements. First, rather than using a late fusion style architecture as in prior
work, our approach implements a composite style fusion architecture to allow for the simultaneous
generation of multimodal features and the learning of fused features during encoding. Second, our
approach processes the higher information content lidar 3D point cloud data with point-based CNN
layers instead of the lower information content lidar 2D DSM used in prior work. Unlike previous
approaches, the proof of concept network utilizes a combination of point and pixel-based CNN layers
incorporating concatenation-based fusion necessitating a novel point-to-pixel feature discretization
method. We characterize our models against a modified GRSS18 data set. Our fusion model achieved
6.6% higher pixel accuracy compared to the highest-performing unimodal model. Furthermore, it
achieved 13.5% higher mean accuracy against the hardest to classify samples (14% of total) and
equivalent accuracy on the other test set samples.

Keywords: data fusion; multimodal; hyperspectral; lidar; remote sensing; neural network; point

convolution

1. Introduction

Remote sensing is the process of obtaining information about an object, area, or
phenomenon through the analysis of data acquired by a measurement device that is
physically separated from the object, area, or phenomenon itself [1]. This process and
its resultant information products have immense scientific, practical, and military value.
An extension of this process, multimodal remote sensing, involves the use of multiple
measurement devices to simultaneously collect various modalities of data. The motivation
behind multimodal remote sensing is that a single acquisition modality rarely provides a
complete understanding of the phenomenon under study [2]. Whereas unimodal sensing is
always limited by the acquisition mode’s disadvantages, the data provided by multimodal
sensing are complementary and overcome individual mode disadvantages.

An example of the complementary aspect of using multiple modalities is in the combi-
nation of hyperspectral and lidar data. Hyperspectral imagery provides spatially organized
spectral data. Each pixel represents the intensity of emittance or reflectance at a specific
electromagnetic wavelength. Hundreds or even thousands of wavelengths are simultane-
ously imaged. This results in a data product with two spatial dimensions in (X, Y) and one

Remote Sens. 2022, 14, 2113. https://doi.org/10.3390/1s14092113

https://www.mdpi.com/journal /remotesensing

https://doi.org/10.3390/rs14092113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8698-8141
https://orcid.org/0000-0003-4982-9859
https://doi.org/10.3390/rs14092113
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14092113?type=check_update&version=2

Remote Sens. 2022, 14, 2113

20f22

wavelength dimension (A). On the other hand, lidar imagery provides spatially organized
structural data. Each pixel or point represents, after some coordinate transformation, the
height above ground of a specific point on an object at a given location in the scene. There
are various collection approaches, but the general resulting data product is a point cloud
represented as an unordered set of millions or billions of points (X, Y, Z) with irregular
spacing. Another common data representation is a 2D projection and discretization of
the point cloud into a lidar digital surface map (DSM). This data product has two spatial
dimensions (X, Y) where each pixel is the average height above the ground of points in the
pixel’s area. Hyperspectral and lidar data are then complementary in their spectral and
structural content.

A common exploitation task of such multimodal hyperspectral and lidar data is
semantic segmentation. Unlike classification which aims to apply a label to all pixels in an
image collectively, semantic segmentation aims to apply a label to each pixel individually.
The resulting semantic map from such exploitation can inform various decisions tasks
such as land use land cover (LULC) [3-5], railway center line reconstruction [6], vegetation
mapping [7], and landslide detection [8]. While these works focus their efforts towards
the joint processing of multimodal hyperspectral and lidar data, they utilize methods
developed for unimodal processing. This adoption is important when working with
multimodal data sets because the methods for unimodal processing still exhibit meaningful
performance. For example, the recent work presented by Li et al. [9] processes only the
hyperspectral component of the IEEE Geoscience and Remote Sensing Society 2018 Data
Fusion Contest data set (GRSS18) [10]. Its two-staged energy functional optimization
feature extraction method, a traditional image processing technique, predicts a reasonably
accurate (82.16%) semantic map. This represents an ~2% improvement over the winner
of the contest Xu et al. [10] who achieved 80.8% accuracy while utilizing both modalities.
On the other hand, Sukhanov et al. [11] process only the multispectral lidar component
of the same data set. Their method of an ensemble of neural networks also produces
a considerable result (69.01%) even in light of utilizing the less information dense lidar
DSM. By embracing methods implemented in the unimodal processing domain, the joint
processing of multimodal data sets for semantic segmentation can be greatly improved.

A considerable subset of multimodal processing methods towards this task are con-
volutional neural network (CNN) based and implement feature level fusion. These ap-
proaches borrow from the advancements made for the unimodal processing of image type
data. Mohla et al. [12] and Wang et al. [13] present two remarkably similar CNN-based
approaches FusAtNet and MAHiDFNet. Both networks implement self-attention mech-
anisms [14] during single modal processing along with shared/cross attention during
multimodal processing. FusAtNet specifically relies on the work of Mou et al. [15] who
present a method of spectral attention for the unimodal processing of hyperspectral data.
Whereas FusAtNet employs a single layer of feature fusion, MAHiDFNet implements
multiple localized fusion layers (dense fusion [13]) within the classification stage of the
network. These fusion CNN-based methods achieve high accuracy (~90%) against the
GRSS 2013 data set [16].

While these recent works are high-performing they may still offer two potential areas
of improvement. First, no previous works utilize and ingest the lidar modality in point
cloud format. Point-cloud data are more information-dense than those of derived lidar
DSMs and contain a richer variety of raw features from which structural information may
be obtained. Second, all previous works implement either a single layer or a relatively
localized region of feature fusion within their architectures. This presents the challenge of
selecting where the fusion operation occurs. If this takes place too early in the network,
the usefulness of the unimodal features suffers; if it takes place too late in the network, the
usefulness of multimodal and fused features suffers. As Piramanayagam et al. [17] and
Karpathy et al. [18] described, a composite style architecture overcomes the challenge of
selecting this single fusion location by incorporating multiple layers of fusion throughout
the network.

Remote Sens. 2022, 14, 2113

30f22

Following from the motivation of utilizing unimodal processing advances in the
multimodal processing domain, we look towards the ever-increasing number of methods
for ingestion and learning from point cloud data [19]. Many unique ideas vie for attention
within the field and convolution-based methods are specifically of interest. Provided
these types of approaches are motivated by pixel-based convolutions, they provide a
natural fit into a CNN-based fusion network. Of specific interest is the kernel point
convolution (KPConv) introduced by Thomas et al. [20]. KPConv identified that during
conventional pixel convolution, the features are localized by pixels. This idea was extended
to allow features to be localized by points. Thus, as each pixel may localize many spectral
features KPConv learns many structural features localized at each point location. The
comparison between the pixel and point convolution provided by Thomas et al. is shown
in Figure 1. KPConv internally represents features as the original point location and feature
vector at each point location. This must be done to account for the irregular spacing and
unordered nature of point cloud data. Pixel-based CNNs rely on the discrete structure
of pixel-based imagery to organize the features learned at each pixel location. Thus, to
generate multimodal features and learn fused features from hyperspectral and lidar data,
the transformation must be implemented to make the internal feature representations
compatible for concatenation-based feature fusion. In Section 2.2.3, we introduce such a
transformation for the generation of multimodal features.

Input Output

Kernel
. Input Kernel

T, Output

L .,
g ' L) -

[Doue]
Ouiput features
R (D]

Output features

Kernel responses

b K Din Do) K. Doue]

Figure 1. Pictorial representation of pixel and point convolutions. (Left) Pixel features localized
by pixel locations are generated by convolving a set of learned kernels over the previous layer’s
feature set. (Right) Point features localized by point locations are generated by convolving a set of
learned kernels over the previous layer’s feature set. Pixel convolution is seen as a special case of
point convolution where the influence of each kernel weight is uniform at each pixel. Reprinted, with
permission, from [20]. ©2022 IEEE.

In summary, our work makes the following claim. The ingestion and processing of
lidar point cloud data with point-based CNNs will result in more useful learned features
leading to a higher performance as measured by pixel accuracy. This will hold in both the
unimodal and multimodal network cases. To gather evidence supporting these claims, we
provide a proof of concept which implements the topics discussed as potential areas for
improvement, resulting in the following contributions:

1. Introduction of two composite style multimodal fusion network architectures. The first
ingests hyperspectral and lidar DSM data. The second ingests hyperspectral and lidar
point cloud data. This establishes a comparative performance between the unimodal
lidar feature learning from pixel and point convolutional layers within multimodal
networks. The hyperspectral and lidar processing sections of these networks are
trained independently, and as a result, this also establishes a comparative performance
between the unimodal lidar feature learning from the pixel and point convolutional
layers in the unimodal network case.

2. Introduction of a novel point-to-pixel feature discretization method. The method
conserves both local and global spatial alignment between features enabling natural
concatenation-based fusion between the pixel and point-based convolutional neural

Remote Sens. 2022, 14, 2113

4 0f22

networks. This method presents a solution to the challenge of generating multimodal
features within a multimodal pixel and point convolutional network.

2. Materials and Methods

The main objective of this research was the implementation and characterization of two
proof of concept neural network architectures which exhibit the strengths and overcome the
weaknesses of the previously implemented networks identified in Section 1. To overcome
the weakness of a single point of fusion imposed by the use of a late fusion style network,
a composite style architecture providing multiple points of fusion was utilized for both
networks. To overcome the possible loss of information from ingesting a lidar DSM, a
point convolution-based network was utilized to ingest and process point cloud data in
one of the networks. Characterization takes place by comparing the performance of the
trained model against the single and multimodal models: a multimodal model utilizing
pixel convolutions to ingest and process lidar DSM, and three unimodal models ingesting
hyperspectral, lidar DSM, and lidar point cloud data. The accuracy of each network is
compared against a prediction for the entire test set area along with accuracy against
difficult to classify multimodal samples.

2.1. Materials

The data set (GRSS18) selected for this work was initially collected and provided
during the IEEE Geoscience and Remote Sensing Symposium (GRSS) 2018 Data Fusion
Contest (DFC) [21]. This data set covers roughly 5 km? in the vicinity of the University
of Houston campus and surrounding areas. It was acquired by the National Center for
Airborne Laser Mapping (NACLM) in February 2017, and consists of three co-registered
data modes: multispectral lidar, hyperspectral, and high-resolution RGB [21].

The lidar data were captured with an Optech Titan MW camera system which operates
at three laser wavelengths 1550 nm, 1064 nm, and 532 nm and collects points at ~0.5 m
ground sample distance (GSD) [21]. This is provided as a set of 14 point cloud tiles per
spectral channel, an intensity raster per spectral channel, and four digital elevation models
(DEMs). The hyperspectral data were captured by an ITRES CASI 1500 camera system
which covers the 380-1050 nm range over 48 bands at a 1.0 m GSD [21]. This is provided
as an orthorectified and spectrally calibrated image at 4172 x 1202 px resolution as a set
of 14 image tiles [22]. The high-resolution RGB data were captured by a DIMAC ULTRA-
LIGHT+ camera system as 14 tiles of 11,920 x 12,020 px in size at a 5 cm GSD [10].

In addition to the raw sensed data, the contest provided a semantically segmented
pixel map covering 20 LULC classes based on OpenStreetMap data at a 0.5 m GSD [21]. Of
the overall 14 image tracts across each modality, the training labels only cover four, and
the rest is reserved as the test set for the data fusion contest itself. Only the multispectral
lidar and hyperspectral data modes which overlap the labeled training area, along with the
semantic map itself, were utilized to train the models.

2.1.1. Preprocessing

Specific efforts were also undertaken to produce a data set that was as close to idealized
as possible to remove the effect of more challenging data situations. An idealized data set
is one in which the individual modalities are co-registered, geo-registered, and temporally
registered along with being collected with similar viewing geometries, from nadir, with the
same resolution. This data set provides the data modalities in a co-, geo-, and temporally
registered format, though issues persist in terms of differing resolutions and viewing
geometries. To adjust and account for the differing resolutions between the lidar’s 0.5 m
GSD, hyperspectral’s 1.0 m GSD, and training label’s 0.5 m GSD, the lidar and training
labels were altered. The training labels were down-sampled via max-pooling from 0.5 m
GSD to 1.0 m GSD to match that of the hyperspectral resolution. Grid subsampling was
applied to the lidar on a 0.5 m grid to more closely match that of hyperspectral resolution;
coincidentally, this is a feature of KPConv preprocessing. Multispectral lidar channels, 1550,

Remote Sens. 2022, 14,2113

50f22

1064, and 532 nm, were collected at 3.5°, +30°, and 7° from nadir, respectively. The data
report provided with the data set also noted that the third channel’s main objective was
the detection of bathymetric returns and in some cases caused spurious returns resulting
in noisy collections in this channel. Thus, for this work, the first lidar spectral channel
collection was used since it was close to nadir and did not have any known or reported
noise issues. This brings the viewing geometries of the data modalities in-line with each
other and produces an format which is as close to idealized as may be possible with this
data set.

2.1.2. Point Cloud Labeling

Training labels were provided as a semantically segmented pixel map. These labels
were mapped to the selected lidar point cloud tiles from the first spectral channel. This
was achieved by iterating through each labeled pixel and extending to +infinity in height
creating an infinite bounding column. Provided that the pixel labels and lidar points are
co-registered, it was then possible to collect all points within this column and apply the
training label to them collectively. This method did not produce a perfect transfer of the
labels from the 2D to the 3D domain, but it was found to be sufficient to adequately train
the point convolution-based models. Residual issues are mostly related to overhanging
structures such as building’s walls and large trees; points below overhangs are incorrectly
labeled as points above, as depicted in Figure 2.

‘vehicle

foliage

F human_path

 vehicle_path

building

| unlabellzc

Figure 2. Pictorial representation of residual issues resulting from underdetermined transfer of labels
from the pixel to point domain. (Left) The 128 x 128 m? area of labeled lidar point cloud depicting
multiple buildings along with surrounding foliage and roadways; (Right) Selected area of scene in
which points below overhanging foliage are incorrectly labeled as foliage. Note: Unclassified point
coloring changed from black to light gray for easier visualization.

2.1.3. Superclass Generation

The 20 LULC classes were recombined into a set of six superclasses: foliage, vehicle,
vehicle path, human path, building, and unlabeled (see Appendix A Tables A1 and A2 for
mapping between the class label sets). This reduction was necessary for the generation
of training, validation, and test (TVT) set sample image patches. It was found that the
original 20 LULC classes were far from equally distributed around the original training
area. This in turn made it impossible to produce image patches with evenly distributed
class representation among the TVT sets. Mapping the LULC classes to superclasses made
it possible to divide the overall labeled image into training, validation, and test sets with
similar class distributions (see Appendix A Figure Al). An overview of the entire data set
after all alterations is depicted in Figure 3.

Remote Sens.

2022, 14,2113

6 of 22

Lidar Point Cloud

Figure 3. Altered GRSS18 data set utilized in this work. (Top Left) Complete hyperspectral image
used in this work, originally a subset of GRSS18 hyperspectral image. (Top Right) Complete lidar
point cloud used in this work, originally Channel 1 of the GRS518 multispectral lidar. Coloring
of points based on height above ground. (Bottom Left) Semantic pixel map of superclass values
over the hyperspectral image. (Bottom Right) Labeled lidar point cloud used for training point
convolution-based networks.

Using superclasses makes it difficult to directly compare the performance of the meth-
ods described in this work with other research results. However, for other works which
have provided either their predicted semantic maps or per class accuracies as supplemen-
tary material, it is possible to translate their results. Using Appendix A Tables Al and A2,
a semantic map predicted on the original 20 LULC classes can be translated into a prediction
on the 6 superclasses. For works which provided a predicted semantic map that covers our
work’s test set area, a direct pixel-by-pixel translation can be performed. For works which
only provide per class accuracies, the translation must be inferred because their exact test
set class distributions are unknown. However, the class distributions over the entire data
set can be used to fairly weight the per class accuracies to compute translated results. This
translation is performed and presented for five works from Xu [10], Hong [22], Cerra [23],
Fang [24], and Li [9]. An overview of the translation for Xu [10], which only provided per
class accuracies, is provided in Appendix A Table A3.

2.1.4. Multimodal Sample Generation

The labeled lidar, hyperspectral, and superclass labels were finally divided into a set of
three 128 x 128 pixel, or in the case of a lidar “pixel area equivalent”, overlapping sample
patches representing 128 m? lidar, hyperspectral, and semantic pixel maps of the same
geographical area. This patch generation was performed to generate both more training
samples and to decrease the sample size for network ingestion. Patch generation was
performed by moving a sliding window over the selected training, validation, and testing
geographical areas every 64 pixels starting from each respective corner. This resulted in a
total of 980 multimodal sample patches for the entire data set. Samples were utilized in
part, or as a whole, during the development of the proposed architectures. A set of three
multimodal samples is shown in Figure 4.

Remote Sens. 2022, 14, 2113

7 of 22

Patch 1 - UTM (3,289,903, 273,520)

Patch 6 - UTM (3,289,903, 273,840)

-
)
=
‘an
e
—
el
-
—
m.\
)
]
Nl\
<
-
=
=
=
i
e
[
=
]
£
3]
M

Hyperspectral

Semantic Point Map Semantic Pixel Map

Figure 4. Three example multimodal data samples comprised of co-registered (Left) hyperspectral,
(Center) lidar point cloud, and (Right) a semantic point map. The semantic point map is provided to
better visualize raw point cloud context.

2.2. Methods

A total of five network architectures were constructed for this work; the characteristics
of each are displayed in Table 1. The first of three unimodal networks H2D only ingests
hyperspectral data and predicts a semantic pixel map. The next unimodal network L3D
ingests lidar point cloud data and predicts a semantic point map. The final unimodal
network L2D ingests lidar DSM data (Z values projected onto a 2D surface) and predicts
a semantic pixel map. The unimodal networks serve two purposes as a performance
comparison against the multimodal networks and as part of the multimodal networks
themselves. Thus, each unimodal network learns both low- and high-level unimodal
features from their provided input.

Remote Sens. 2022, 14,2113 8 of 22
Table 1. Overview of all constructed architectures and their characteristics.

Architecture Modality Pixel CNN Point CNN Input Output Comprised of
H2D Single Ve - HS Pixel map -

L3D Single - v LI-PC Point map -

L2D Single v - LI-DSM Pixel map -
H2D_L2D Multi v - HS, LI-DSM Pixel map H2D, L2D
H2D_L3D Multi v v HS, LI-PC Pixel map H2D, L3D

The two multimodal networks utilize the learned features from each intermediate
encoding layer of the unimodal networks. The first multimodal network H2D_L.2D is
a composite style fusion network [17] comprised of its own layers along with fusion
connections from both H2D and L2D. The second multimodal network H2D_13D is also a
composite style fusion network comprised of its own layers along with fusion connections
from both H2D and L3D. H2D, L2D, and H2D_L2D work entirely on pixel-based data and
utilize pixel-based convolutional operations. L3D works entirely on point-based data and
utilizes point-based convolutional operations (KPConv [20]). H2D_L3D works on both
pixel and point-based data and thus makes use of both pixel and point-based convolutional
operations. H2D_L3D also utilizes the point feature to pixel feature discretization method
described in Section 2.2.3. Our contribution is the specific arrangement and usage of pixel-
based CNNs, point-based CNNs (KPConv [20]), a composite style architecture [17,18], and
our method of point to pixel discretization (Section 2.2.3) in the five architectures described.

2.2.1. Pixel Convolution-Based Architectures

All three pixel convolution-based networks depicted in Figure 5 are constructed in
a similar manner, as UNet [25] style architectures. They are comprised on nine distinct
sections, four down-sampling encoding sections, a central latent embedding section, and
four up-sampling decoding sections. Each individual section is comprised of two pixel-
based convolutional layers followed by batch normalization and ReLU activation layers.
The encoding sections are proceeded by a max pooling operation and decoding sections
are preceded by a 2D transpose CNN operation. Skip connections are added between
the encoding and decoding sections with the same receptive field [25]. The first encoding
sections of H2D, L2D, and H2D_L2D contain 128, 48, and 128 filters, respectively. Each
successive encoding section then contains twice as many filters as the previous. The central
embedding section contains twice as many filters as the final encoding section. The initial
decoding section contains half as many filters as the central embedding section; each
successive decoding section contains half as many as the previous plus the number needed
for the skip connection concatenation. Finally, each network has a final convolutional
layer with a softmax output which predicts a semantically labeled pixel map of the input.
H2D’s input is band-max normalized, x;; = ﬁ’éx]) [26]. The number of filters selected
for each network’s initial encoding section was empirically determined. Multiple models
were trained from each architecture with an increasing number of initial filters starting at
32, increasing by 16, until no further test set accuracy improvement was found. Network
training is further described in the following section.

2.2.2. Point Convolution-Based Architectures

The two architectures which utilize point convolution-based layers are L3D and
H2D_L3D, which are depicted in Figure 6. They are constructed in a manner akin to that
of the pixel convolution-based architectures, as UNet [25] style architectures. H2D_L3D
is constructed almost exactly as H2D_L2D, although the fusion connections to the lidar
processing network are from L3D rather than L2D. As described in detail in the next section,
the point to pixel feature discretization is applied to the fusion connections. L3D sections are
comprised of analogous operations as introduced in the KPConv text [20]. The encoding
sections are comprised of two KPConv layers followed by a strided KPConv; strided

Remote Sens. 2022, 14,2113

9of22

KPConv is analogous to a pooling operation. The central latent embedding section is only
comprised of two KPConv layers. The decoding sections are comprised of nearest neighbor
upsampling followed by a unary KPConv layer. Skip connections are added between the
encoding and decoding sections with the same receptive field [20,25]. The same filter sizing
scheme was utilized as described in the pixel convolution-based networks. Again, for both
the L3D and H2D_L3D, the initial number of filters was empirically determined. The initial
encoding section of L3D contains 32 filters, whilst H2D_L3D contains 128.

_ o - o Il :{> 7
D~ D‘ D_':ibﬁiiﬂ ::H i XH X .

s

2D Semantic Map

= -
HHI e 3-HHS
Lidar DSM ud | | I | | | | (| o 2D Semantic Map

Pixel MaxPool —— skip Connection
Pixel Convolution D Pisel Transpose CNN Lay Connoction Fusion Connection Concatenation

12D

Figure 5. Pixel convolution-based networks. (Top) H2D ingesting raw hyperspectral data and
predicting a 2D semantic map. (Bottom) L2D ingesting a lidar DSM and predicting a 2D semantic
map. (Center) H2D_L2D ingesting low- and high-level unimodal hyperspectral and lidar features via
fusion connections from H2D and L2D and predicting a 2D semantic map. H2D_L2D is constructed
as a composite style fusion architecture inspired by [17].

-:>H~D~M o E-A- R

Hyperspectral L

. o U
lﬁ“HIHILnH..H ns- 18- 1[]F

Lidar Point Cloud 3D Semantic Map

L3D

Pixel Convolution Unary KPCony Pixel MaxPool Strided KPConv ——— skip Connection Fusion Connection /’\ Point to Pixel Feature: Concatenation
KPConv nary Pixel Transpose CNN Point Nearest Upsample —> Layer Connection Discretization

Figure 6. Point convolution-based networks, H2D is pictured again. (Top) H2D ingesting raw
hyperspectral data and predicting a 2D semantic map. (Bottom) L3D ingesting a lidar point cloud and
predicting a 3D semantic map utilizing KPConv layers for processing as originally described by [20].
(Center) H2D_L3D ingesting low- and high-level unimodal hyperspectral and lidar features via
fusion connections from H2D and L3D and predicting a 2D semantic map. H2D_L3D is constructed
as a composite style fusion architecture inspired by [17].

2.2.3. Point Feature Discretization

The H2D_L3D architecture utilizes a combination of pixel and point-based convolu-
tional layers within a composite style architecture. During the generation of multimodal
features, an issue arises when attempting to fuse the hyperspectral pixel feature and lidar
point feature representations: they have incongruent dimensions (left side of Figure 7).
A novel discretization method was implemented to transform the point features into a
representation amenable to a natural concatenation-based fusion. KPConv’s internal point

Remote Sens. 2022, 14, 2113

10 of 22

feature representation is split up into two parts: the feature tensor which contains a feature
vector for each point, and a point tensor which contains each point’s original location. The
transformation takes the point features which are localized by continuous valued point
locations and discretizes them into a rectangular tensor which is localized by discrete
valued pixel locations. This point feature discretization results in a point feature tensor
with spatial dimensions matching that of the pixel feature tensor allowing for concatenation
based fusion to generate multimodal features.

NN

ToReTy,

%%?&/

% XLayer

Layer N hyperspectral
feature representation

XLayer

Layer N multimodal feature
representation

1. Bucketization >> 2. Gather & Scatter >> 3. Reduce (Max Pool) Final Discretization >

= Sjuiog Jo JequinN

Layer N lidar feature
representation

Figure 7. Pictorial representation of a novel method of 3D point feature discretization. (Left)
Hyperspectral pixel and lidar point feature tensors for any given encoding section of H2D_L3D (light
red) and L3D (blues). (Center) The bucketization of original point locations into a grid with the same
size as the FsNet receptive field, the gather-scatter of point features into each cell, the reduction
in point features for each cell, and the final discretization into a rectangular tensor. (Right) The
concatenation-based fusion of pixel features and discretized point features.

The first step of the discretization process is the generation of a 2D target grid onto
which the point locations are mapped. The dimensions and boundaries of this grid are
selected based on the maximum and minimum point (X, Y) values. This ensures that each
point falls into a cell on the target grid. The point locations are bucketized, each point
location is mapped to a specific cell in the target grid. This results in either 0, 1, or N point
locations in each grid cell. The point features corresponding to each point location in the
target grid are gathered from the point feature tensor and scattered into the target grid
(Utilizing the PyTorch [27] extension library pytorch-scatter [28]). After this gather—scatter
operation, the target grid contains point features rather than its original point locations.
Finally, cells with more than one point feature vector are reduced via max pooling to ensure
that each cell only contains 0 or 1 point feature vectors. The result of these operations is a
rectangular tensor with matching spatial dimensions as the pixel feature tensor which can
be directly concatenated to said tensor. This process is pictorially described in Figure 7. A
Python code Listing A1 of the method is provided in Appendix A.2.

A side effect, and major benefit, of this approach is that each target grid cell con-
tains the point feature(s) which directly correspond with its pixel features in the spatial
dimension because of the matching resolutions of the data modalities at each network
layer. Furthermore, because this applies to each target grid cell, the resulting discretization
conserves both the local and global spatial alignment of the point and pixel features.

We note two drawbacks to this method. First, the application of max pooling for the
reduction operation results in the loss of some point feature information. Second, some
target grid cells end up with zero-valued point features; each point is guaranteed a target
grid cell location but each target grid cell location is not guaranteed a point. A cell neighbor
averaging scheme was implemented in an attempt to fill in zero-valued cells, though the
resulting operation was prohibitively expensive and not readily parallelizable. Through
the empirical observation of this averaging scheme it was found that only 5-12% (800-2000
of 16,384 pixels) of cells for any given input sample were ever zero-valued. Furthermore,
zero-valued cells were never found past the second downsampling section of the network
and even when the averaging scheme was implemented. No discernible performance

Remote Sens. 2022, 14, 2113

11 0f 22

improvement was observed. Thus, the averaging scheme was not implemented in this
work and the effects of zero-valued cells are assumed to be negligible. Note, depending
on the KPConv neighborhood radius selected and the density of points after KPConv
grid-subsampling this may not be the case for other data sets.

2.2.4. Network Training

An important consideration when designing machine learning models is the evalua-
tion of a model’s performance. Provided the majority of pixels and points in each sample
fall in the unlabeled class, it is pertinent to not measure their contribution to both the loss
and accuracy of the models. To implement this the networks’ outputs were altered prior to
the loss and accuracy calculations so that the predicted label for a truly unlabeled pixel was
correct. This in effect ignores the contribution of pixels of an unknown class and provides
values that are representative of the models’ classification performance of pixels of a known
class. Unless stated otherwise, all loss and accuracy values reported refer to this calculation.

All five networks were optimized against a customized weighted cross-entropy loss
function. Class weights for the loss function were calculated as 1.0 minus their total
percentage of the training set. The weighted loss function was implemented to alleviate
the large class imbalance present in the data set (Appendix A Table A2). Training the
unimodal networks H2D, L2D and L3D commenced as standalone semantic classifiers
for their respective data types. After training, the weights for these networks were held
constant. Training of H2D_L2D and H2D_L3D was performed by providing multimodal
data samples to the respective unimodal networks which provide fusion connections to
either during the forward pass, accruing gradients, and backpropagating loss only through
non-weight frozen layers.

The sample batching for the networks was implemented via three distinct schemes.
H2D, L2D and H2D_L2D were trained by the field standard practice of stacking input
imagery along a new batching dimension. L3D was trained utilizing the batching technique
described in [20], that is, stacking samples along the point and feature dimensions and
utilizing precomputed neighbor indices for discerning each sample cloud and layer connec-
tion during training. Furthermore, the batching technique in [20] limits the total number
of points in a single-batched sample based on two pre-training calibration processes. The
first process determines the total number of points to include in each point’s neighborhood
radius during training. The second process uses this neighbor limit to iteratively obtain
an empirical upper limit on the total number of points within a single batched sample.
This work did not utilize the second calibration process, rather, an upper bound of 85,000
points per batch was empirically observed during development and set for all KPConv-
based models and batching. This equates to approximately 7-10 lidar samples per batch
depending on the location from which the sample center was drawn (samples at the edge
of tiles contain fewer points). Finally, H2D_L3D was trained with a combination of the
first two schemes. Hyperspectral imagery was stacked along a new batch dimension, lidar
point clouds were stacked along their point and feature dimensions. The batch limit for
this network was set to 1 given the hardware memory constraints of forward passes on
H2D and L3D combined with backpropagating through H2D_L3D.

H2D, L2D and L3D were trained for a maximum of 50 total epochs, and all multi-
modal networks were trained for a maximum of 25 total epochs due to their increased
computational requirements requiring anywhere from 1600 to 1900 s to complete an epoch.
The training histories for all networks are provided in Figure A2. During the training of all
networks, a monitor was implemented to save the model with the best observed validation
loss and validation accuracy to date. After the final epoch, the model with the highest
validation accuracy was selected for reporting results. H2D, L2D, H2D_L2D, and H2D_L3D
were trained with an Adam optimizer and a learning rate of 1 x 10> which was reduced
by 2% after each epoch. L3D was trained identically to that as described in the original
KPConv work [20], an SGD optimizer with a learning rate of 1 x 1072, an approximately
2% reduction in learning rate per each epoch, 0.98 momentum, 1 x 10~2 weight decay, and

Remote Sens. 2022, 14, 2113

12 of 22

gradient norm clipping. All networks were trained on an Nvidia RTX 3090 with 24 GB of
VRAM under the PyTorch [27] software library. An overview of the distinctive training
parameters for each network are provided in Table 2.

Table 2. Distinctive model training hyperparameters and characteristics. Batching dimension “batch”
refers to a new batch dimension along which input samples are stacked, “point” refers to the stacking
samples in the same point dimension and utilizing pre-computed neighbor indices to discriminate
samples. Sub-net weights refer to H2D and L2D within H2D_L2D along with H2D and L3D within
H2D_L3D.

Batching Input Sub-Net

Architecture # Params Max Epoch Opt/LR Batch Size Dimension Modalities Weights Other
H2D 1241M 50 Adam/ 8 Batch HS - -
1x10
L3D 94M 50 1 iGl]g{2 7-10 Point LI-PC - Grad. Clip.
L2D 175M 50 Adam/ 8 Batch LI-DSM - -
1% 10
H2D_L2D 186.9 M 25 lid?gl/g, 8 Batch HS,LI-DSM Frozen -
H2D_L3D 1933 M 25 ﬁdi‘gl/s 1 Batch, point HS, LI-PC Frozen -

2.2.5. Post-Processing

To allow for a fair performance comparison between the only semantic point map-
producing network, L3D, and the other networks, the labels of the prediction had to be
projected into a pixel representation. This was performed through the same process as
described in Section 2.2.3. That is, the point labels were projected into pixel labels over
an image with the same dimensions as the semantic pixel maps. Instead of using a max
operation for pooling, a majority voting scheme was implemented for each pixel label.
Using the resulting semantic pixel maps, it was possible to calculate a mean pixel accuracy
for the final L3D model. This same process was also necessary when generating the L3D
prediction for the test set area (as opposed to individual test samples).

In order to generate a pixel accuracy measurement of the test set area, the individual
sample predictions had to be combined. As described in Section 2.1.4, prior to network
training, the test set area was divided into overlapping sample patches by sliding a 128 px?
window with a 64 px stride across the test area. These samples necessarily contained some
portions which overlapping with that of their neighbors. Thus, to combine the resulting
predicted semantic maps from each individual sample, a method was needed to select
which prediction for a given pixel from different overlapping test samples would represent
that pixel’s final label prediction. This was achieved by collecting all predicted labels
and the corresponding softmax confidence values for each test pixel from all individual
predictions. The label with the highest softmax confidence was then selected as the pixel’s
final label prediction. These final predictions were then collected and combined into a
predicted semantic map for the test set area. Note that for the L3D network, this combined
prediction was first generated as a semantic point map, which was then discretized to
a semantic pixel map through the same process as described in Section 2.2.3. The final
predicted semantic map then allowed for a pixel accuracy value to be calculated, along
with an accuracy against each class label.

Finally, as described in the next Section 3.1, a more granular performance metric
was calculated through a residual analysis. The computation of this metric required first
collecting and calculating the mean pixel accuracy of both the H2D and L3D models. These
values were then used to classify the test samples into one of four categories. A pictorial
overview of the entire methodology starting with the preprocessing of data and ending
with the reporting of model metrics is provided in Figure 8.

Remote Sens. 2022, 14, 2113

13 of 22

prepare data sample

Select, preprocess, and N !ED |

sl/
Project any point based ﬂ I
semantic map to pixel e --------TTesmeae-

based semantic map l$|

Lidar Poiat Cloud

\ 4
Calculate sample's - Collate - Report overall
performance metrics ~ 7 sample metrics 7| test set metrics
- = Record mean H2D and
Above H2D mean
— Above L3D mean—> Easy Both —————> 13D accuracy for
residual analysis
—'gk;?:; ll:liflil:)) r:?:::—) Easy Hyperspectral
Collate Report residuals
residual metrics analysis
Below H2D mean 3 .
Above L3D mean Easy Lidar
Below H2D mean e
Below L3D mean_) Difficult Both B

Figure 8. Overall workflow of the methodology from data to decision products. First, the GRS518 data
set [21] is modified and preprocessed to produce training, validation, and testing multimodal samples.
A model from each of the five network architectures described is then trained (L2D and H2D_L2D
not pictured). The predicted semantic maps are post processed; sample metrics are calculated and
collated into overall test set metrics. Finally, the results of H2D and L3D are used to perform the
residual analysis. Overview and motivation of residual analysis provided in Section 3.1.

3. Results

The pixel accuracy metric results of all network trainings performed are provided in
Table 3. These values were calculated from the combined test sample predictions depicted
in Figure 9. With respect to the unimodal networks, the relative under performance of
the lidar processing networks in terms of pixel accuracy in relation to H2D is attributed
to the lower information content in their input compared to the hyperspectral data; a
hyperspectral image with 786 k individual spectral pixels, versus 40-90 k lidar points (each
with an x, y, and z coordinate) versus a lidar DSM with 16,384 pixels. As predicted, the L3D
network outperformed the L2D network, and did so utilizing roughly half the number of
parameters. This result is attributed to L3D’s utilization of point-based convolutional layers
(KPConv) and the ingestion of raw point cloud data. KPConv provides greater flexibility in
the filters it can learn because of its ability to alter the influence of point features based on
their spatial distance (h;; in Figure 1 right) to filter (kernel) points.

Both of the multimodal fusion networks outperformed all of the unimodal networks
for all but the human path class. This result is directly attributable to their ability to fuse
information from both modalities of data. We provide further evidence of this ability in the
next subsection. Contrary to initial conjecture, the H2D_L2D outperformed H2D_L3D by
nearly 5%. As further conjecture with regard to this result, it is attributed to H2D_L3D’s
utilization of the point feature discretization method and usage of L3D’s point features. As
noted, a side-effect of the discretization method is that it loses some feature information
through the final reduction operation applied to combine the point feature vectors occu-
pying the same target grid cell. Furthermore, the point features provided from L3D were
generated based on the semantic labeling transferred from the 2D to 3D domain which is
an underdetermined process. Both of these are noted as areas for future investigation in
the subsequent section.

Remote Sens. 2022, 14, 2113

14 of 22

Table 3. Experimental results and comparison to previous work’s translated results. Translation
computed as described in Section 2.1.3. The best results are highlighted in bold.

Metric H2D L3D L2D H2D_L3D H2D_L2D Xul[10] Hong[22] Cerra[23] Fang[24] Li[9]
Class Accuracy
building 91.83 9747 98.49 89.69 99.17 89.88 80.52 89.47 85.96 89.90
vehicle path 69.49 7095 8224 86.25 83.98 65.64 38.25 57.99 62.69 71.98
human path 4820 3724 28.15 45.88 47.16 59.10 55.78 59.03 75.11 50.83
foliage 93.17 31.03 5.590 93.41 85.55 87.26 79.74 91.01 71.43 85.96
vehicle 4147 8491 30.44 38.54 94.62 82.73 89.81 95.38 94.77 86.31
Statistics
Precision 0.825 0.749 0.672 0.854 0.899 - - - - -
Recall 0.831 0.761 0.717 0.844 0.897 - - - - -
F-measure 0.825 0.736 0.663 0.842 0.894 - - - - -
TIoU 0.720 0.618 0.575 0.745 0.830 - - - - -
Kappa 0.730 0.600 0.533 0.756 0.838 - - - - -
Balanced Accuracy 68.83 64.32 4898 70.75 82.10 76.92 68.82 78.58 77.99 76.80
Pixel Accuracy 83.09 76.14 71.75 84.44 89.72 81.28 68.62 80.00 77.84 81.91

Test Area Hyperspectral

L2D Test Area Prediction
e

N

Figure 9. Combined test sample predictions over the entire test set area for all models. (Row 1,
Column 1) False color hyperspectral image of test set area. (R1C2) Ground truth labeling of test set
area. (R2C1) H2D prediction. (R3C1) L3D prediction in point cloud format. (R4C1) L3D prediction
in pixel format. (R2C2) L2D prediction. (R3C2) H2D_L3D prediction. (R4C2) H2D_L2D prediction.

3.1. Residuals Analysis

To further elicit the performance gains of the multimodal models, a more granular
metric was warranted. A residuals analysis of the test sample accuracies for all models with
respect to the mean test sample accuracy from the H2D and L3D models was performed.
First, the mean accuracy for the H2D and L3D models were computed and all test samples
were categorized by whether they fall above or below each mean value. Samples falling
above the mean value for a given model were categorized as easier to predict (“easy”) for
that model and those falling below the mean were categorized as harder to predict (“hard”)
for that model. Figure 10 depicts a visualization of the process using histograms to identify

Remote Sens. 2022, 14,2113

15 of 22

Count

Count

H2D T

the easier and harder samples, which also depicts the easiest and hardest to predict samples
for either model.

est Accuracy Histogram

— Average 80.72

Highest Accuracy Sample

0.0 0z

L3D Test Accuracy Histogram

0.4 06 0.8
Sample Accuracy

— Average 68.94

0.4

Lowest Accuracy Sample Highest Accuracy Sample

< Harder | Easier —»

o
: '"'-""""lllllﬂmma‘ it
b 11T Y i .

0.6
Sample Accuracy

Figure 10. Histograms of test set accuracy over individual samples observed from H2D and L3D and
examples of sample performance. (Top) H2D histogram along with the lowest and highest accuracy
samples. (Bottom) L3D histogram along with the lowest and highest accuracy samples. Lowest and
highest accuracy samples are colored by correct pixels/points (green), incorrect pixels/points (red),
and masked unlabeled pixels/points (light gray).

This categorization process resulted in four distinct categories of multimodal test
samples based on the combination of easiness or hardness with respect to both H2D and
L3D models:

¢ Easy Hyperspectral (EH): Contains samples that were easy for H2D to predict accu-
rately but hard for L3D to predict accurately.

* Easy Lidar (EL): Contains samples that were hard for H2D to predict accurately but
easy for L3D to predict accurately.

e Easy Both (EB): Contains samples that were easy for both H2D and L3D to
predict accurately.

¢ Difficult Both (DB): Contains samples that were hard for both H2D and L3D to
predict accurately.

Figure 11 provides a matrix depicting the categorization process and statistics for the
test data set samples. The 112 total test samples consisted of 23 EH, 30 EL, 44 EB, and 15 DB
sample types. By computing and comparing the mean accuracy of each model against these
sample types, it is possible to further outline the performance gains multimodal models
made over unimodal models.

Remote Sens. 2022, 14, 2113

16 of 22

H2D Mean Test Accuracy
Sample Accuracy Sample Accuracy L3D
Above Mean Below Mean Totals
%) % § (EB) (EL) 74 Samples
cs |22 Easy Both EasyLidar Above Mean
23 44 Samples 30 Samples
o2 EH DB
Qe E § () () 38 Samples
= o2 Easy Hyperspectral Difficult Both Below Mean
23 Samples 15 Samples
H2D 67 Samples 45 Samples
Totals Above Mean Below Mean 112 Samples

Figure 11. Categorization matrix for test samples. The mean test set accuracy for the H2D and L3D
models are calculated. Each test sample is then categorized into one of four types based on the pixel
accuracy achieved by both H2D and L3D against the sample. Test sample accuracies above the model
mean are categorized as “easy”, whilst accuracies below the model mean are categorized as “hard”.

3.2. Residuals Analysis Results

In Table 3, it was shown that the unimodal networks achieved the lowest pixel ac-
curacies while the multimodal networks achieved the highest pixel accuracies. However,
this does not provide direct evidence that this increased performance is a result of actually
fusing information from both modalities rather than more efficiently exploiting a single
modality. To investigate this claim, we present the mean test sample accuracy for each
model against the four identified sample types as described in Section 3.1 in Table 4. Un-
surprisingly, the unimodal networks achieved higher mean test sample accuracy against
sample types which are categorized as easy for their given input modality. Consequently,
the unimodal networks achieved lower accuracy against samples types which are catego-
rized as hard for their given input modality. For example, the H2D model achieved a higher
EH accuracy than both lidar-based unimodal networks L2D and L3D. The lidar-based
networks achieved a higher EL accuracy than the hyperspectral-based unimodal network
H2D. Together, all three unimodal networks achieved a high EB and low DB accuracy.
Thus, the scheme segregates test samples based on the subjective difficulty, as viewed by
the unimodal networks collectively.

In Table 4, we find that the multimodal networks collectively outperformed all uni-
modal networks for the EB and DB test sample types. Furthermore, to some extent, both
networks performed either on par with or outperformed all unimodal networks on the EH
and EL sample types. These findings provide strong evidence that both multimodal models
made their performance gains over unimodal models by fusing information. Note that the
unimodal and multimodal architectures share the same components and technology, are
provided the same set of test data, and the multimodal networks only have access to weight-
frozen unimodal network features. Thus, the only difference between the unimodal and
multimodal networks that accounts for the increased mean DB test sample type accuracy is
the multimodal models’ ability to fuse information. With all other metrics held constant,
there is no other explanation for this increased accuracy against the hardest-to-classify
sample type. Had it been the case that the multimodal models only saw improvement in
either the EH, EL, or EB sample types, this would indicate that they simply learned a more
efficient means of exploiting the corresponding data modality; this could then be traced
back to their increased parameter count.

Remote Sens. 2022, 14, 2113

17 of 22

Table 4. Each model’s mean test set accuracy with respect to easier- and harder-to-classify sam-
ples across both the hyperspectral and lidar modality. Highest mean accuracy per sample type
is emboldened.

Architecture Mean Pixel EH Accuracy EL Accuracy EB Accuracy DB Accuracy
Accuracy

H2D 80.7 89.7 68.3 89.1 67.1

L3D 68.9 30.3 81.2 86.5 52.2

L2D 66.6 329 79.4 84.0 415

H2D_L3D 83.3 90.6 72.0 89.5 77.1

H2D_L2D 88.6 85.7 89.9 92.0 80.6

4. Conclusions

The main research goal of this work was the implementation of two proof of concept
network architectures which exhibited the strengths of previous neural network-based ap-
proaches while improving upon weaknesses. As a result of the composite style architecture,
the multimodal networks were able to generate both low- and high-level unimodal and
multimodal features without making a trade-off for either. Furthermore, it was assumed
that the ingestion of point cloud data and the use of point convolution-based layers would
result in a more performant model in both the single and multimodal case. We found
this assumption to hold in the unimodal case, but failed for the multimodal case. We are
left with the claim that this is a result of the proposed point-to-pixel feature discretization
method and its lossy process of discretizing localized groups of point features. This claim
is open to future study. In the reported results, we found that regardless of this assumption
failing, both multimodal models were able to outperform their unimodal counterparts.
Notably, they were able to achieve anywhere from 10 to 40% higher mean accuracy towards
hard-to-classify samples (DB) while maintaining performance across other sample types
(EH, EL, EB). This result not only provides strong evidence that the composite style archi-
tecture generated useful features but also that the act of jointly processing the multimodal
data can provide a considerable performance increase over singular processing.

While these results are promising and outlining the novel contributions of this work,
future work is still needed. The proposed architectures utilized some of the least complex
convolutional network layer technologies for both the pixel and point data. A great deal
of research exists into more complex layer types and architectures [20,29-31] which may
provide additional benefits to both the single and multimodal architectures. It was noted
that the data set for this work was modified to produce a more idealized form to separate
the effects of more challenging data scenarios such as differing co-, geo-, and temporal
registrations and differing viewing geometries and resolutions. Furthermore, while the
data set was adequately sized to characterize the network architectures, a larger data set
may provide an opportunity to observe the networks’ performance against a larger and
more diverse problem instance. The proposed point-to-pixel discretization method needs
further study. Many possible alterations exist which may improve its efficacy. For example,
the imputation of zero-valued cells during the discretization process may not have yielded
meaningful results against this data set, though it may be necessary when working with
differing resolutions between modalities. Finally, as noted in Section 1, many works exist
which make great effort towards unimodal semantic segmentation. The methods described
in these works may be borrowed to further increase the performance of the unimodal
network streams. Specifically, the dimensionality reduction and band selection from the
hyperspectral modality may provide a considerable pruning of redundant information.
This would have a great effect when working with hyperspectral data sets that have
hundreds or even thousands of spectral bands.

Remote Sens. 2022, 14, 2113

18 of 22

Author Contributions: Conceptualization, K.T.D. and B.].B.; methodology, K.T.D.; software, K.T.D.;
validation, K.T.D. and B.J.B.; formal analysis, K.T.D.; investigation, K.T.D.; resources, K.T.D.; data
curation, K.T.D.; writing—original draft preparation, K.T.D.; writing—review and editing, K.T.D. and
B.J.B.; visualization, K.T.D.; supervision, B.].B.; project administration, K.T.D. and B.].B.; funding
acquisition, K.T.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Original data set acquired from IEEE GRSS IADF and the Hyperspectral
Image Analysis Lab at the University of Houston: https:/ /hyperspectral.ee.uh.edu/?page_id=1075
(accessed on 1 October 2021). Altered data set available upon request to K. Decker.

Acknowledgments: K. Decker thanks B. Borghetti for their guidance along with their parents and
fiancé for continued support. The views expressed in this article are those of the author and do not
necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the
U.S. Government.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Appendix A.1. Superclass Generation from GRS518 Classes

Table A1. GRSS18 class labeling scheme statistics and superclass labeling assignment.

GRSS18 Class Pixel Count Percentage of Total Superclass Assignment
unlabeled 3,712,226 64.773 unlabeled
non-residential buildings 894,769 15.612 buildings
major thoroughfares 185,438 3.236 vehicle path
roads 183,283 3.198 vehicle path
residential buildings 158,995 2.774 buildings
sidewalks 136,035 2.374 human path
stressed grass 130,008 2.268 foliage
evergreen trees 54,322 0.948 foliage
paved parking lots 45,932 0.801 vehicle path
highways 39,438 0.688 vehicle path
healthy grass 39,196 0.684 foliage
railways 27,748 0.484 vehicle path
stadium seats 27,296 0.476 unlabeled
cars 26,289 0.459 vehicle
trains 21,479 0.375 vehicle
deciduous trees 20,172 0.352 foliage
bare earth 18,064 0.315 foliage
crosswalks 6059 0.106 human path
artificial turf 2736 0.048 unlabeled
water 1064 0.019 unlabeled
unpaved parking lots 587 0.010 vehicle path
Total 5,731,136

Table A2. Superclass statistics over total imaged area and within training, validation, and test sets.

Superclass Pixel Count Percentage of Total Percentage of TVT Sets
unlabeled 3,743,322 65.316 66.75, 67.33, 56.37
building 1,053,764 18.387 18.45, 11.69, 25.06
vehicle path 482,426 8.418 8.73,8.52,6.83
foliage 261,762 4.567 2.05, 4.05,2.87
human path 142,094 2.479 3.31,7.18,7.83

vehicle 47,768 0.833 0.7,1.23,1.04

https://hyperspectral.ee.uh.edu/?page_id=1075

Remote Sens. 2022, 14, 2113

19 of 22

vehicle

foliage

human_path

vehicle_path

building

unlabelled

Figure Al. Training, validation and test set split of the semantic pixel map. Yellow lines denote
set boundaries. Top left section represents the training set. Bottom right section denotes testing set.
Center section denotes the validation set.

Table A3. Example translation of previous work which predicts semantic pixel maps on the GRSS18
data set using the original 20 LULC classes. Below, the per class accuracies as reported by Xu et al. [10]
are used. First, the class distributions of the 20 LULC classes are calculated over the entire GRSS18
labeled area. Second, for each class, the total number of correct pixels are calculated by multiplying
the total pixel count by the reported accuracy. Then, for each of the superclasses, the sums of both the
correct and total pixels are calculated. Finally, the per superclass accuracies and pixel accuracy are
calculated from the summations. Note that the reported pixel accuracy against the 20 LULC classes is
also provided at the bottom. This value is recalculated based on the known class distribution as a
check for fairness, it is off by less than 1%.

GRSS18 Pixel Reported Correct Superclass Correct Total
20 LULC Classes Count Accuracy Pixels Assignment Superclass Sum Sum Accuracy
unlabeled 3,712,226 - - unlabeled building 947,096 1,053,764 89.88

non-residential buildings

894,769 91.94 822,651 building vehicle path 316,655 482,426 65.64

major thoroughfares 185,438 45.24 83,892 vehicle path foliage 228,403 261,762 87.26
roads 183,283 68.97 126,410 vehicle path human path 83,976 142,094 59.10
residential buildings 158,995 78.27 124,445 building vehicle 39,518 47,768 82.73
sidewalks 136,035 61.55 83,730 human path

stressed grass 130,008 82.4 107,127 foliage Total Total Pixel
evergreen trees 54,322 97.45 52,937 foliage 1,615,648 1,987,814 81.28
paved parking lots 45,932 96.01 44,099 vehicle path

highways 39,438 93.98 37,064 vehicle path

healthy grass 39,196 94.52 37,048 foliage

railways 27,748 90.78 25,190 vehicle path

stadium seats 27,296 99.74 27,225 unlabeled

cars 26,289 71.29 18,741 vehicle

trains 21,479 96.73 20,777 vehicle

deciduous trees 20,172 71.96 14,516 foliage

bare earth 18,064 92.87 16,776 foliage

crosswalks 6059 4.06 246 human path

artificial turf 2736 84.26 2305 unlabeled

water 1064 11.24 120 unlabeled

unpaved parking lots 587 0 0 vehicle path

Reported OA 80.78

Calculated OA

81.49

Remote Sens. 2022, 14,2113 20 of 22

Appendix A.2. Point to Pixel Feature Discretization Python Example

Listing Al. Python code implementing the KPConv Lidar point feature representation to a rectangu-
lar tensor pixel feature representation. Makes use of the pytorch-scatter library [28].

I import torch

> from torch_scatter import scatter_max

3

. def point_pixel_discretization(x_hs, x_li, points):
- nnn

6 Discretizes point feature tensors to a pixel feature representation

8 :param x_hs: Hyperspectral features of shape [# hs features,

9 spatial X, spatial Y]

10 :param x_1li: Lidar features of shape [# points, # 1i features]
11 :param points: Lidar points of shape [# points, XYZ]

12 :returns: Discretized lidar features of shape [#1i features,
13 spatial X, spatial Y]

16 # Record dimensions of tensors

17 li_point_dim, 1li_feat_dim = x_1i.shape

18 hs_feat_dim, hs_x_dim, hs_y_dim = x_hs.shape

19

20 # Generate the boundaries for the bins in x and y (binning to the
21 # "left" so +eps on "right")

2 eps = torch.finfo(torch.float32).eps

23 x_min, x_max = torch.min(points[:,0]).data, \

24 torch.max (points[:,0]) .data

2 y_min, y_max = torch.min(points[:,1]).data, \

2 torch.max (points[:,1]) .data

27 x_steps = torch.linspace(x_min, x_max+eps, hs_x_dim+1,
28 device=’cuda’)

29 y_steps = torch.linspace(y_min, y_max+eps, hs_y_dim+1,
30 device=’cuda’)

1. Bucketize the points in x and y based on boundaries and

create the target.

34 # Translate to indices Buckets: [1]2]..|n| -> Indices: |0[1]..|n-1]|
x_bucket_indices = torch.bucketize(points[:,0], x_steps)-1
y_bucket_indices = torch.bucketize(points[:,1], y_steps)-1

38 # Combine 1D bucket indices into 2D indicies to produce the

39 # target tensor

40 xy_indices = (y_bucket_indices*hs_x_dim)+x_bucket_indices

41 x_1li_xfrm_flat = torch.zeros((hs_x_dimx*hs_y_dim, 1li_feat_dim),
2 device=’cuda’)

2. Gather features from x_li based on the corresponding bucket
index xy_indices

46 # 3. Scatter features into cells of x_li_xfrm_flat target
4. Reduce cells of target with more than 1 feature by max pool
scatter_max(x_1li, xy_indices, dim=0, out=x_li_xfrm_flat)

50 # Return pixel representation of point features as rectangular tensor
51 return x_li_xfrm_flat.reshape((li_feat_dim, hs_x_dim, hs_y_dim))

Remote Sens. 2022, 14,2113 21 of 22

Appendix A.3. Model Training Histories

H2D Loss H2D Accuracy (V:81.78%) H2D_L3D Loss H2D_L3D Accuracy (V:83.25%)
10 10
04 04
0.8 0.8
03 03
> >
" g 06 " T 0.6
-] i W :
< o4 < 044
01 02 01 024
0.0 0.0 0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50 o 5 10 15 20 25 0 5 10 15 20 25
Epoch Epoch Epoch Epoch
L3D Loss L3D Accuracy (V:78.97%) H2D_L2D Loss H2D_L2D Accuracy (V:84.35%)
10 1.0
04 0.4
.
08 0.8
03 W 03
> >
" g 06 " g 0.6
§ 5 8., £
02 g . 3
2 04 204
o1 02 o1 0.2
0.0 0.0 0.0 0.0
o 10 20 30 40 50 o 10 20 30 40 50 [5 10 15 20 25 o 5 10 15 20 25
Epoch Epoch Epoch Epoch
L2D Loss L2D Accuracy (V:67.22%)
10
0.4
08
03
>
. g os /«v—\,—\,—m
o2 2 04 Train Loss, Accuracy Train Total Accuracy
o1 —— Val Loss, Accuracy Val Total Accuracy
- 0.2
o TestAccuracy Max Val Accuracy
001~ T T ; ; r 0.01— r v T y T Min Val Loss

] 10 20 30 40 50] 10 20 30 40 50
Epoch Epoch

Figure A2. All model training histories. For each model, two plots are provided that depict the
training and validation histories of the model loss and accuracy. The accuracy plots for unimodal
networks also provide the accuracy against all pixel classes including unlabeled, in lighter color
shading. Each loss plot labels, in purple, the minimum observed loss during training. Each accuracy
plot labels the maximum observed validation accuracy, in orange, and that model’s test accuracy,

in gold.

References

1. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Ltd.: Hoboken,
NJ, USA, 2015.

2. Lahat, D,; Adali, T.; Jutten, C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects; IEEE: New York, NY,
USA, 2015. [CrossRef]

3. Rasti, B.; Ghamisi, P; Plaza, J.; Plaza, A. Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component
Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6354—-6365. [CrossRef]

4. Xia,].; Yokoya, N.; Iwasaki, A. Fusion of Hyperspectral and LiDAR Data with a Novel Ensemble Classifier. I[EEE Geosci. Remote
Sens. Lett. 2018, 15, 957-961. [CrossRef]

5. Sun, Y;; Zhang, X.; Xin, Q.; Huang, J]. Developing a multi-filter convolutional neural network for semantic segmentation using
high-resolution aerial imagery and LiDAR data. ISPRS]. Photogramm. Remote Sens. 2018, 143, 3-14. [CrossRef]

6. Beger, R.; Gedrange, C.; Hecht, R.; Neubert, M. Data fusion of extremely high resolution aerial imagery and LiDAR data for
automated railroad centre line reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, S40-S51. [CrossRef]

7. Garcia, M.; Riafio, D.; Chuvieco, E.; Salas, J.; Danson, EM. Multispectral and LiDAR data fusion for fuel type mapping using
Support Vector Machine and decision rules. Remote Sens. Environ. 2011, 115, 1369-1379. [CrossRef]

8. Pradhan, B.; Jebur, M.N.; Shafri, H.Z.M.; Tehrany, M.S. Data fusion technique using wavelet transform and taguchi methods for
automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Trans. Geosci. Remote Sens.
2016, 54, 1610-1622. [CrossRef]

9. Li, C;Tang, X,; Shi, L.; Peng, Y.; Tang, Y. A Two-Staged Feature Extraction Method Based on Total Variation for Hyperspectral
Images. Remote Sens. 2022, 14, 302. [CrossRef]

10. Xu, Y.;; Du, B;; Zhang, L. Multi-source remote sensing data classification via fully convolutional networks and post-classification
processing. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22-27 July
2018; pp. 3852-3855. [CrossRef]

11. Sukhanov, S.; Budylskii, D.; Tankoyeu, I.; Heremans, R.; Debes, C. Fusion of LiDar, hyperspectral and RGB data for urban land
use and land cover classification. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS),
Valencia, Spain, 22-27 July 2018; pp. 3864-3867. [CrossRef]

12. Mohla, S.; Pande, S.; Banerjee, B.; Chaudhuri, S. FusAtNet: Dual Attention Based SpectroSpatial Multimodal Fusion Network

for Hyperspectral and LiDAR Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, Seattle, WA, USA, 14-19 June 2020; pp. 92-93.

http://doi.org/10.1109/JPROC.2015.2460697
http://dx.doi.org/10.1109/TGRS.2017.2726901
http://dx.doi.org/10.1109/LGRS.2018.2816958
http://dx.doi.org/10.1016/j.isprsjprs.2018.06.005
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.012
http://dx.doi.org/10.1016/j.rse.2011.01.017
http://dx.doi.org/10.1109/TGRS.2015.2484325
http://dx.doi.org/10.3390/rs14020302
http://dx.doi.org/10.1109/IGARSS.2018.8518295
http://dx.doi.org/10.1109/IGARSS.2018.8517333

Remote Sens. 2022, 14,2113 22 of 22

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

Wang, X.; Feng, Y.; Song, R.; Mu, Z.; Song, C. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral
and LiDAR data. Inf. Fusion 2022, 82, 1-18. [CrossRef]

Jetley, S.; Lord, N.A.; Lee, N.; Torr, PH. Learn To Pay Attention. In Proceedings of the 6th International Conference on Learning
Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC, Canada, 30 April-3 May 2018. [CrossRef]

Mou, L.; Zhu, X.X. Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network
for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 110-122. [CrossRef]

Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Van Kasteren, T.; Liao, W.; Bellens, R.; Pizurica, A;
Gautama, S.; et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE]. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 2405-2418. [CrossRef]

Piramanayagam, S.; Saber, E.; Schwartzkopf, W.; Koehler, F. Supervised Classification of Multisensor Remotely Sensed Images
Using a Deep Learning Framework. Remote Sens. 2018, 10, 1429. [CrossRef]

Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Li, EF. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23-28 June 2014; pp. 1725-1732. [CrossRef]

Guo, Y,; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. arXiv 2019,
arXiv:1912.12033.

Thomas, H.; Qi, C.R.; Deschaud,].E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution
for Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27-28 October 2019;
pp. 6410-6419.

Xu, Y;; Du, B.; Zhang, L.; Cerra, D.; Pato, M.; Carmona, E.; Prasad, S.; Yokoya, N.; Hansch, R.; Le Saux, B. Advanced multi-sensor
optical remote sensing for urban land use and land cover classification: Outcome of the 2018 ieee grss data fusion contest. IEEE .
Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1709-1724. [CrossRef]

Hong, D.; Chanussot, J.; Yokoya, N.; Kang, J.; Zhu, X.X. Learning-Shared Cross-Modality Representation Using Multispectral-
LiDAR and Hyperspectral Data. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1470-1474. [CrossRef]

Cerra, D.; Pato, M.; Carmona, E.; Azimi, S.M.; Tian, J.; Bahmanyar, R.; Kurz, F; Vig, E; Bittner, K.; Henry, C.; et al. Combining deep
and shallow neural networks with ad hoc detectors for the classification of complex multi-modal urban scenes. In Proceedings
of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22-27 July 2018; pp. 3856-3859.
[CrossRef]

Fang, S.; Quan, D.; Wang, S.; Zhang, L.; Zhou, L. A two-branch network with semi-supervised learning for hyperspectral
classification. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain,
22-27 July 2018; pp. 3860-3863. [CrossRef]

Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:1505.04597.

Cao, F; Yang, Z; Ren,].; Jiang, M.; Ling, W.K. Does Normalization Methods Play a Role for Hyperspectral Image Classification?
arXiv 2017, arXiv:1710.02939.

Paszke, A.; Gross, S.; Massa, E; Lerer, A.; Bradbury, J.; Chanan, G; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F, Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
pp. 8024-8035.

Fey, M. Pytorch_Scatter. 2021. Available online: https://github.com/rustyls/pytorch_scatter/releases/tag/2.0.9 (accessed on
15 November 2021).

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7-12 June 2015; pp. 1-9. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

http://dx.doi.org/10.1016/j.inffus.2021.12.008
http://dx.doi.org/10.48550/arxiv.1804.02391
http://dx.doi.org/10.1109/TGRS.2019.2933609
http://dx.doi.org/10.1109/JSTARS.2014.2305441
http://dx.doi.org/10.3390/rs10091429
http://dx.doi.org/10.1109/CVPR.2014.223
http://dx.doi.org/10.1109/JSTARS.2019.2911113
http://dx.doi.org/10.1109/LGRS.2019.2944599
http://dx.doi.org/10.1109/IGARSS.2018.8517699
http://dx.doi.org/10.1109/IGARSS.2018.8517816
https://github.com/rusty1s/pytorch_scatter/releases/tag/2.0.9
http://dx.doi.org/10.1109/CVPR.2015.7298594

	Introduction
	Materials and Methods
	Materials
	Preprocessing
	Point Cloud Labeling
	Superclass Generation
	Multimodal Sample Generation

	Methods
	Pixel Convolution-Based Architectures
	Point Convolution-Based Architectures
	Point Feature Discretization
	Network Training
	Post-Processing

	Results
	Residuals Analysis
	Residuals Analysis Results

	Conclusions
	
	Superclass Generation from GRSS18 Classes
	Point to Pixel Feature Discretization Python Example
	Model Training Histories

	References

