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Abstract: The fusion of dissimilar data modalities in neural networks presents a significant challenge,
particularly in the case of multimodal hyperspectral and lidar data. Hyperspectral data, typically
represented as images with potentially hundreds of bands, provide a wealth of spectral information,
while lidar data, commonly represented as point clouds with millions of unordered points in 3D
space, offer structural information. The complementary nature of these data types presents a unique
challenge due to their fundamentally different representations requiring distinct processing methods.
In this work, we introduce an alternative hyperspectral data representation in the form of a hyper-
spectral point cloud (HSPC), which enables ingestion and exploitation with point cloud processing
neural network methods. Additionally, we present a composite fusion-style, point convolution-based
neural network architecture for the semantic segmentation of HSPC and lidar point cloud data. We
investigate the effects of the proposed HSPC representation for both unimodal and multimodal
networks ingesting a variety of hyperspectral and lidar data representations. Finally, we compare the
performance of these networks against each other and previous approaches. This study paves the
way for innovative approaches to multimodal remote sensing data fusion, unlocking new possibilities
for enhanced data analysis and interpretation.

Keywords: data fusion; multimodal; hyperspectral; lidar; remote sensing; neural network;
point convolution

1. Introduction

Hyperspectral and lidar remote sensing technologies are powerful tools for character-
izing the Earth’s surface and features in great detail. While hyperspectral sensors offer a
high spectral resolution for identifying and mapping the chemical and physical properties
of materials, lidar sensors provide high spatial resolution for measuring the height and
structure of vegetation and terrain [1]. Fusing these two data sources can provide a more
comprehensive understanding of various phenomena and their dynamics. This leads to
better-informed decision-making for a wide range of applications such as land use land
cover [2], ecosystem monitoring [3], agriculture [4], and urban planning [5]. Throughout
this article, we will explore a new approach that fuses hyperspectral and lidar remote
sensing data to enhance our understanding of various phenomena. Specifically, we will
introduce a novel hyperspectral representation technique and a method of learned feature
fusion with lidar features that can improve the accuracy of semantic segmentation. By pro-
viding this new technique, we aim to contribute to the development of better-informed
decision-making in the field of remote sensing.

While the fusion of hyperspectral and lidar data has shown great potential for many
applications, most existing studies have focused on using only the 2D representations of
lidar data, such as digital surface models (DSM) [6,7]. While these 2D representations
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can provide valuable information regarding the structure of a scene, they may not fully
capture the 3D complexity of natural and urban environments. Recent studies have demon-
strated that the use of 3D representations of lidar data, such as point clouds, offers a more
information-dense data product from which classification and semantic segmentation can
be performed [8,9]. Naturally, there is some growing curiosity and exploration of 3D
representations of hyperspectral data for hyperspectral and lidar fusion in an attempt to
further integrate the two data sources in 3D [10–12].

One promising method for generating fused 3D hyperspectral and lidar data is intro-
duced by Brell et al. [10]. In their work, they introduce a multi-step process where they
first segment an airborne laser scanning (ALS) point cloud into object (labeled) regions and
extract local structural information. Next, a co-registered hyperspectral image is projected
into the segmented object regions to extract spectral information. Finally, the structural
and spectral feature sets are merged via interpolation and concatenation to generate a
hyperspectral point cloud (HSPC). A similar method is presented by Mitschke et al. [12]
but implemented much closer to the sensor level of the overall system. In this setup,
a hyperspectral sensor is mounted atop a co-calibrated lidar scanning system, and images
are collected simultaneously. After collection, the co-calibration is used to convert lidar
points into 3D world coordinates and subsequently into hyperspectral image coordinates.
The value of the hyperspectral image coordinates at which the lidar point lies is then
associated with the given point. While traditional methods hold great potential for the
generation of fused hyperspectral and lidar data within the 3D domain, they typically rely
on pre-defined statistical models or known laws of physics and optics equations. This
reliance on a priori assumptions about properties of the data introduces human biases and
can limit these types of models’ flexibility and adaptability to the specific complexities
of the data in specific tasks. In contrast, neural networks offer a less biased approach
because they assume less about the relationship between the characteristics of the data
and the labels. Their capacity to learn from the data allows for potentially more effective
fusion methods, finely tuned to the unique characteristics and structures of the data. This
adaptability makes them particularly well-suited to address the challenges of hyperspectral
and lidar data fusion within the 3D domain.

As noted, there exists a large corpus of previous work related to the learned fusion
and exploitation of hyperspectral and lidar data within the 2D image type domain. An ar-
ticle from Lu et al. [7] depicts a recent and mature method. In their method, a central
feature extraction network is adversarially trained by two GANs [13] with coupled spatial
attention [14] between the hyperspectral and lidar modalities. Simultaneously, a multi-
level feature fusion and classification network is used to first generate class probabilities
from features provided at multiple depths within the feature extraction network. These
probabilities are then combined into a joint class probability distribution and used to
generate a semantically labeled pixel map of the input. While mature methods like this
and others [15,16] exist for fusion in the 2D domain, recent work partially within the 3D
domain has shown promising initial results. This opens up new avenues for exploring the
fusion of hyperspectral and lidar data in this manner and highlights the need for continued
research in this area to fully leverage the rich information contained within these two
complementary modalities.

To our knowledge, Decker et al. [8], the same authors as this article, is the only
study that combines 2D hyperspectral image data and 3D lidar point cloud data within a
fusion neural network. Their composite fusion [17,18] style convolutional neural network
(CNN) includes both pixel and point convolutional layers. The pixel convolution stream
of the network processes hyperspectral images using standard 2D-CNN layers. The point
convolution stream of the network uses Kernel Point Convolution (KPConv) [19] layers
to process lidar point clouds. The central fusion stream fuses unimodal features from the
pixel and point streams, produces multimodal pixel features, and generates a semantic
pixel map prediction. The authors introduce a unique point-to-pixel feature discretization
method to enable the concatenation-based fusion of the lidar and hyperspectral features.
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While the resulting 2D–3D fusion network performed competitively, it did not achieve
state-of-the-art performance compared to 2D–2D networks; this may be attributed to
the discretization of 3D to 2D features. The next natural step is to explore methods for
representing hyperspectral data as a 3D point cloud and performing a learned fusion
operation entirely within the 3D domain.

In this work, we take this next step by extending the fusion network into the 3D
domain, presenting our contributions as advancements in the field of hyperspectral and
lidar data fusion. The key contributions of this paper can be summarized as follows:

1. We introduce an innovative method for generating Hyperspectral Point Cloud (HSPC)
representations, one focusing on the exploitation of primarily spectral features and an-
other allowing for the utilization of both spectral and structural features (Section 2.1.2).

2. We develop a composite style fusion network based on Kernel Point Convolution
(KPConv), as well as other network architectures, which form part of an ablative
study aimed at evaluating the performance of unimodal networks in comparison to
the multimodal network (Section 2.2.1). This fusion network is the first to perform
a learned feature fusion of 3D point clouds in a fully 3D point convolution-based
neural network.

3. We propose a unique method for associating hyperspectral point locations with lidar
point locations, enabling the generation of a canonical set of points where multimodal
features are localized (Section 2.2.2).

4. We offer a comprehensive performance analysis of both unimodal and multimodal
networks, discussing their results in the context of our proposed hyperspectral repre-
sentation and fusion implementation (Section 3).

Through these contributions, we strive to not only advance the fusion network to
operate entirely in the 3D domain but also to enhance our understanding and processing of
hyperspectral and lidar data.

2. Materials and Methods

The contributions of this work are the proposed HSPC representation, KPConv-
based [19] multimodal composite fusion style network, and method of multimodal canoni-
cal point location generation. To perform the characterization of these contributions, we
make specific efforts to prepare the lidar modality from the selected dataset and generate
corresponding semantic point labels. Further, we isolate specific unimodal networks to
study the efficacy of utilizing the HSPC representations against the standard 2D hyperspec-
tral representation. The dataset, its preprocessing, HSPC generation, model architectures,
and canonical point location generation are all described within this section.

2.1. Materials

The selected dataset for this work was provided by the IEEE Geoscience and Remote
Sensing Society (GRSS). It was originally provided to participants of the IEEE GRSS 2018
Data Fusion Contest [20] and acquired by the National Center for Airborne Laser Mapping
(NACLM) in February 2017. The dataset depicts approximately 5 km2 of the University of
Houston campus and its surrounding areas. It provides three co-registered data modalities:
hyperspectral, multispectral lidar, and high-resolution RGB [20] along with semantic
pixel labels.

The hyperspectral modality was captured by an ITRES CASI 1500 camera system
and covers the 380–1050 nm range over 48 bands at a 1.0 m ground sample distance
(GSD) [20]. It was provided as a set of 14 spectrally calibrated and orthorectified image
tiles, each 4172 × 1202 pixels [21]. The multispectral lidar modality was acquired with
an Optech Belgrade, MT, USA Titan MW camera system across three wavelengths 1550,
1064, and 532 nm at ∼0.5 m GSD [20]. Per each spectral channel, there are 14 point clouds,
an intensity raster, and four digital elevation models. A DiMAC ULTRA-LIGHT+ camera
system acquired the high-resolution RGB data. It was provided as a set of 14 images of
11,920 × 12,020 pixels in size at a 5 cm GSD [22]. Finally, the semantic pixel labels were
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developed from OpenStreetMap data as 20 Land Use Land Cover (LULC) classes at a
0.5 m GSD [20]. Of the total 14 multimodal tiles, these semantic labels only cover four.
The other 10 tiles were reserved as the test set for the 2018 Data Fusion Contest itself.
In this work, we only utilized the hyperspectral, multispectral lidar, and semantic labels.
The high-resolution RGB data was excluded.

2.1.1. Preprocessing and Lidar Labeling

In this work, we were concerned with the efficacy of the HSPC representation and its
effects on both unimodal networks and multimodal fusion networks. As a result, it was
pertinent to ensure that the dataset utilized for the development and characterization of the
implemented networks does not present confounding effects on the models’ performance.
Thus, preprocessing of the dataset proceeded in the same manner as presented in [8].
In short, we only utilized the 1500 nm multispectral lidar channel, which was collected 3.5°
off-nadir; we applied grid subsampling to the lidar data on a 0.5 m grid [19], and subsample
the semantic pixels labels with max-pooling. This resulted in a co-registered, geo-registered,
and temporally registered dataset with closely matching viewing geometries (overhead
at or near nadir) and resolution across all modalities (0.5 m GSD). As noted in [8], this
preprocessing does not produce an exact match for the stated data metrics, but it prevents
confounding factors from affecting the study of the HSPC representation.

The semantic pixel map provided by the GRSS18 dataset contains 20 distinct LULC
along with unlabelled classification. In [8], the spatial distribution of these classes about the
dataset was found to be far from equally distributed. This asymmetric distribution of classes
makes it difficult to spatially separate the dataset into a training, validation, and testing
area from which multimodal samples are drawn. To alleviate this issue, the 20+1 LULC
were combined into a set of 5+1 superclasses: foliage, vehicle, vehicle path, human path,
and unlabelled exactly as in [8]. Appendix A Tables A1 and A2 provide an overview of the
mapping between classes along with various statics before and after mapping. After the
superclass generation was complete, it was possible to spatially separate the dataset into
training, validation, and testing regions with closely matching class distributions (see
Figure A1).

The GRSS18 dataset provides its semantic labels as a pixel map. The pixels within
the semantic labels correspond to the hyperspectral pixels one-to-one. However, no labels
are provided which correspond to the lidar points one-to-one. To produce a ground truth
labeling of the lidar data for model development and training, we performed the same
method presented in [8]. Provided that the hyperspectral, lidar, and semantic pixel labels
are co-registered, it is possible to associate all lidar points that fall within a label’s pixel
region with that label. To do so, each semantic pixel label is iterated over, and an infinitely
tall bounding cuboid is generated for each. All lidar points that fall within a semantic pixel’s
cuboid are associated with that label value. The result of this is a lidar point cloud labeling
corresponding to the supplied semantic pixel labels. As noted in [8], this does not produce
a perfect transfer of labels from the 2D to the 3D domain, but it is sufficient to adequately
develop and train networks that utilize the lidar data modality. The largest source of
error with this method is due to overhanging structures in the scene, such as foliage and
nearby tall structures. Points below overhangs and near the sides of tall structures are
incorrectly labeled as the label is applied to the highest point; a result of capturing the
hyperspectral data from overhead. This issue is depicted pictorially in the second figure of
Decker et al. [8].

2.1.2. Hyperspectral Point Cloud Generation

Section 1 suggests an alternative representation of the hyperspectral modality as a
point cloud. This representation is necessary to both ingest and utilize the hyperspectral
data within a point convolutional network such as KPConv. Further, this allows for a
matching feature representation between hyperspectral and lidar data processing streams
of a multimodal fusion network and allays issues noted in [8] with fusing pixel and point
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convolutional features. To generate this alternative data representation, we projected the
hyperspectral data into a higher dimension.

Projecting data into a higher dimension, a basis expansion, is a common technique
used in classical machine learning to allow linear classifiers to ingest data that represent
non-linear phenomena. We reused this idea for a similar purpose, allowing a segmentation
model to work with an alternative data representation. To begin, we first identified that
image-type data are comprised of two spatial and one spectral dimension. The spatial
dimensions directly correspond to pixel indices. The spectral dimension corresponds to
the amount of spectral energy at a given pixel for single or multiple specific wavelengths.
On the other hand, point cloud data are comprised of a variable-size set of unordered points
in 3D space with irregular spacing and density. Further, at each point, some structural
or even spectral information is associated. The most natural and simple translation from
pixel-based image-type data to point cloud data is to simply translate pixel locations to
points and keep the original association of features at each pixel location. This process is
depicted pictorially in Figure 1 for a sample hyperspectral image patch.

Figure 1. Simple method of initial 2D hyperspectral image projection into a 3D hyperspectral
point cloud. (Left) A 2D hyperspectral image with pixel locations identified by blue points. Note
the hyperspectral image in the plot has many more actual pixels than depicted. (Right) A 3D
hyperspectral point cloud is created by translating pixels to point locations (blue) and associating
pixel spectrum values at the new point locations 1-to-1.

While this method of hyperspectral projection achieves a realizable implementation,
it makes it difficult to methodologically associate hyperspectral and lidar point locations
spatially; a useful feature for multimodal feature fusion is described further in Section 2.2.2.
The described method generates a hyperspectral point location at each corresponding pixel
location with no defined height (thus requiring a default assumption such as Z = 0), while
all lidar points have some associated height. Thus, hyperspectral points corresponding to
locations on objects with height in the scene are vertically distant from the corresponding
lidar point(s). To account for this issue, we presented an alteration to the method described
in the preceding paragraph by setting the Z values for points as the average height of the
lidar points within the pixel’s spatial boundary, essentially mapping the lidar DSM over the
hyperspectral points. We labeled the two forms of the HSPCs as the “spectral point cloud”
(Z = 0) and the “structural point cloud” (Z = DSM). An example of a hyperspectral
sample projection in both formats is provided in Figure 2.
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Figure 2. Example of GRSS18 hyperspectral data after undergoing the two proposed projection
methods. (Left) The hyperspectral sample is projected by the simple method where the point heights
are initialized to Z = 0, i.e., the spectral point cloud. (Right) The hyperspectral sample is projected
by a more complex method where the point heights are initialized to the lidar DSM, i.e., the structural
point cloud.

In contrast with the alternative of associating spectral information with each lidar point
location, the structural HSPC points contain observed spectral information but interpolated
spatial information. Thus, this structural HSPC mainly contains spectral information but
also has the ability to be more easily spatially aligned to a corresponding lidar point cloud.
We recognize that as a result of associating structural information to the spectral information
using the average local lidar point height within the pixel, our technique is limited in its
ability to represent complete spatial information in certain locations, such as overhangs or
suspended objects where multiple lidar points occupy the same vertical location.

2.1.3. Multimodal Sample Generation

Once preprocessing and HSPC generation were completed, the training, validation,
and testing regions of the dataset (see Figure A1) were sub-divided into sets of multimodal
samples in the same manner as described in [8]. The primary motivation for this sample
generation technique is firstly to produce smaller samples that can properly be ingested
by the architectures described in the next section. A secondary motivation is to bolster
model comparability between this work and [8] by producing the same set of samples split
into the same training, validation, and testing sets. Samples were created by generating a
set of spatial boundaries and selecting the data from each modality within each boundary.
Boundaries were generated by creating a 128 × 128-pixel region within the pixel coordinate
system (hyperspectral image and semantic pixel labels measured in pixel indices) and
iterating the boundary every 64 pixels in both the X and Y directions. Further, this operation
was performed four times, corresponding to each minimal and maximal corner of the spatial
area defining the training, validation, and testing areas. Finally, to slice the values of point
cloud-based modalities, the pixel coordinates were translated, based on the defined co-
registration, into point coordinates (measured in UTM) and used to select points within
that region. This resulted in a combined 980 multimodal samples across the entire training,
validation, and testing sets. A single multimodal sample example is depicted in Figure 3.

2.2. Methods

A total of four network architectures were utilized in this work, three unimodal
and one multimodal. A summary of their characteristics is provided in Table 1. One of
these architectures (L3D) was originally described in [8], and the other three architectures
represent our contribution. These network architectures were selected to determine the
efficacy of the HSPC representations toward semantic segmentation and their effects on
both unimodal and multimodal fusion networks. To evaluate this, we constructed both
unimodal and multimodal fusion networks that make use of the two proposed structural
and spectral HSPC representations. Note, a multimodal architecture ingesting lidar point
cloud data and the spectral HSPC data was not implemented. This is because when using
these two specific modalities, the lidar and hyperspectral point locations are, in height,
spatially distant and never undergo mixing during the KPConv operation. As a result,
a multimodal architecture using these modalities would, in essence, never be able to
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generate multimodal features using the method described in Section 2.2.2; this section also
provides further information regarding the issue.

Figure 3. Example of a single multimodal sample after preprocessing, hyperspectral point cloud
generation, and sample slicing. (Top Row) The semantic pixel labels, semantic point labels, and lidar
points are colored by Z-height. (Bottom Row) The hyperspectral image, spectral point cloud (Z = 0),
and structural point cloud (Z = DSM).

Table 1. Overview of all constructed architectures and their characteristics.

Architecture Input Modality CNN Type/
Output Type Input Data Type Comprised of

L3D [8] Single Point LI-PC -
H3D-Flat (HSF) Single Point HS-Spectral -
H3D-DSM (HSD) Single Point HS-Structural -

HSD-L3D Multi Point HS-Struct, LI-PC H3D-DSM, L3D

The first unimodal architecture L3D [8] ingests lidar point cloud data and predicts a
label for each point, i.e., a semantic point cloud. The purpose of this network is to serve
as a comparison against the two other unimodal networks which ingest hyperspectral
data and as the source of unimodal lidar features for the multimodal fusion network.
The next unimodal network H3D-Flat ingests the spectral HSPC and predicts a semantic
point cloud. This network serves as a point of comparison against networks that ingest the
other hyperspectral data representations. The final unimodal network H3D-DSM ingests
the structural HSPC and predicts a semantic point cloud. The purpose of this network is
to serve as the final point of comparison for networks that ingest hyperspectral data and
also as the source of unimodal hyperspectral features for the HSD-L3D multimodal fusion
network. We relied on the results presented in [8] (the H2D network) to obtain the results
of a 2D-CNN network that ingests hyperspectral image-type data.

To determine the effect the structural HSPC representation has within multimodal
hyperspectral and lidar fusion networks, we introduced the HSD-L3D architecture. This
network ingests unimodal features from H3D-DSM and unimodal features from L3D and
predicts a semantic point cloud. This serves as a point of comparison for fusion networks
that ingest hyperspectral data in the structural point cloud format. We relied on the results
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presented in [8] to obtain the performance of multimodal fusion networks that ingest
hyperspectral data in its native image-type format and lidar data in both its native point
cloud format (H2D_L3D in [8]) and its DSM format (H2D_L2D in [8]).

2.2.1. Architectures

All architectures presented in this work are KPConv [19] point convolution-based
architectures. The first unimodal point convolution architecture L3D is depicted in the
bottom row of Figure 4 in red, and it is constructed exactly as described in [8]. The other
two unimodal point convolution architectures H3D-Flat and H3D-DSM, are depicted in the
top row of Figure 4 in blue. They are constructed exactly as L3D and themselves the same
architecture. Thus, all three unimodal point convolution-based networks have the same
architecture and only differ by their input data type; they are the unimodal point cloud
processing architecture. The unimodal point cloud processing architecture is a UNet [23]
style architecture with four down-sampling encoding sections, a central latent embedding
section, and four up-sampling decoding sections. The central embedding section and
encoding sections are comprised of a KPConv and a strided KPConv layer. Strided KPConv
is analogous to a pooling operation [19]. The decoding sections are comprised of a KPConv
nearest neighbor upsampling and a unary KPConv layer. The unary KPConv layer is
analogous to a 1 × 1 pixel convolution. The number of filters in each layer of the encoding
section starts at 64 and increases by a factor of 2 in each subsequent layer until the central
section, then in the decoding section, decreases by a factor of 2 in each subsequent layer
with the final decoding section having the same number of filters as the initial encoding
section. A final KPConv layer is at the end of the architecture, which produces an n × 1
class prediction, where n is the number of points in the input.

Figure 4. All four KPConv-based architectures HSF, HSD, L3D, and HSD-L3D. (Top row, blue)
The architecture of the HSF and HSD unimodal networks. These architectures ingest either of the
HSPC representations and predict a semantic point map against the hyperspectral point locations.
(Bottom row, red) The architecture of the L3D unimodal network. This architecture ingests lidar
point cloud data and predicts a semantic point map against the lidar point locations. (Center row,
orange) The architecture of the HSD-L3D network. This network ingests unimodal features from
the HSD and L3D networks via the vertical fusion connections, generates and learns multimodal
features, and predicts a semantic point map against the canonical point locations.

The multimodal architecture HSD-L3D has three distinct processing streams (rows
of Figure 4). The outer (top and bottom) processing streams work only on unimodal
data, either hyperspectral or lidar, and are the unimodal networks L3D and H3D-DSM
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themselves. The inner fusion stream has no input data at the first layer and only accepts
fusion connections from the outer unimodal network streams at later layers. Provided
the outer unimodal processing streams have already been fully defined in the preceding
paragraph, we now describe the central fusion stream architecture here.

The central fusion stream of the HSD-L3D architecture is a UNet-style architecture
with four down-sampling encoding sections, a central latent embedding section, and four
up-sampling decoding sections. The encoding sections are comprised first of a unimodal
feature fusion layer further described in Section 2.2.2 followed by a KPConv and strided
KPConv layer. The fusion connections at the start of the encoding layers are directed
from the ends of each encoding section of the unimodal processing streams. The central
embedding section is comprised of a KPConv and strided KPConv layer. The decoding
sections are comprised of a KPConv nearest neighbor upsampling and a unary KPConv
layer. The number of filters in each section starts at 128 and increases by a factor of 2 until
the central section, then decrease by a factor of 2, with the final decoding section having
the same number of filters as the initial encoding section. Further, the input feature count
of the first layers within each encoding section is larger than the output value described
in the previous section. It is increased by the collective total of the incoming unimodal
feature counts; this ensures the multimodal features fit within each encoding section input
layer. A final KPConv layer is at the end of the architecture, which produces an n f × 1 class
prediction, where n f is the number of points in the combined hyperspectral and lidar point
cloud inputs to the unimodal processing streams.

2.2.2. Canonical Multimodal Point Creation and Unimodal Feature Fusion

The multimodal fusion architecture HSD-L3D utilizes the unimodal hyperspectral
and lidar features generated by H3D-DSM and L3D to generate multimodal features prior
to the start of each network section. Unlike pixel convolution-based multimodal fusion
networks (e.g., H2D_L2D in [8]), which can naturally concatenate unimodal features along
a similar axis, an issue arises when attempting to do the same in a point convolution-based
multimodal fusion network. Whereas two sets of pixel features are localized by the same
pixel locations (given matching resolutions), two sets of point features may be localized to
two different sets of points; see the bottom left-hand panel of Figure 5. Thus, no canonical
set of points naturally exists that localizes both of the unimodal features.

Instead of attempting to generate a set of canonical multimodal point locations or
selecting a subset of either or both of the hyperspectral or lidar point locations, in this
study, we opted to simply combine the point locations from the hyperspectral and lidar
point clouds. This set of combined point locations was then deemed the set of canonical
multimodal point locations. The motivation behind this decision was to maintain the infor-
mation contained within the unimodal point features. Had the canonical point locations
been selected as a subset of all possible point locations, then some form of interpolation
or pooling would be necessary to reduce the features into a dimension amenable to lo-
calization at the set of reduced point locations. Thus, keeping all unimodal features and
allowing the network to learn this encoding would result in a more informative set of
multimodal features.

To properly fuse the features localized by the canonical point locations, the correspond-
ing indices of features from the opposite modality of data were initialized to mean value
along the feature dimension (vertical dimension in Figure 5). At the initial layer l = 0 of the
fusion stream of the multimodal networks, this resulted in a fused feature representation.
At deeper network layers, the l − 1 multimodal features must also be incorporated. As a
natural consequence of the definition of KPConv and the construction of the initial layer’s
canonical points, the correct mapping of the l − 1 layer’s features and the l layer’s points
were already in place. This process is pictorially depicted in the right-hand panels of
Figure 5.
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Figure 5. Process of canonical multimodal point location creation and unimodal feature fusion.
(Top Left) The HSD-L3D network, which utilizes this method for feature fusion. (Top Right) An
enlarged view of a single layer-stack of the central fusion stream of the network where unimodal
feature fusion takes place. (Bottom Left) Point locations and feature representations of the unimodal
and multimodal features prior to feature fusion. (Bottom Right) Canonical point locations and feature
representation resulting from the creation and fusion process. Note, the multimodal point locations
and features are only present after the first layer of the network. When present, these multimodal
point locations are passed from the prior unimodal layers (l − 1) of the network.

The point locations used at each section of a KPConv-based network were pre-
computed using grid-subsampling [19]. This means that the unimodal hyperspectral
and lidar point locations at each network section are known prior to the network ingesting
data and can be used to fully define the set of canonical multimodal point locations. Further,
the strided KPConv down-sampling and nearest neighbor up-sampling layers within the
fusion stream were referenced to this pre-defined set of canonical point locations. These
facts together mean that the multimodal features at the end of the l − 1 network section
were localized to the same set of points at layer l; during encoding, the opposite holds
during decoding. In total, this resulted in a unimodal point feature fusion operation that
maintained all points and features from both unimodal network connections. Note, that as
a result of this method, the semantic point clouds predicted by the multimodal networks
could be compared and evaluated from the combined class labels of the corresponding
multimodal hyperspectral and lidar input sample.
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2.2.3. Graph Pyramid Generation

As mentioned, successive applications of grid subsampling to a given point cloud is
necessary to pre-compute the required point locations at which features are localized at
each layer/depth within a KPConv-based network. The top three rows of Figure 6 depict
the point locations for a single sample prior to ingestion into the H3D-DSM, L3D, and HSD-
L3D networks. During the grid subsampling calculation, three other data structures were
also instantiated and defined by the results of the operation: down-sampling indices,
up-sampling indices, and point neighbor indices. The down-sampling and up-sampling
indices indicated many-to-one and one-to-many mappings of points between different
depths of the network. They were directly used by strided KPConv and nearest-neighbor
upsampling operations to either contract or expand features to a new set of point location(s)
during encoding and decoding. The neighbor indices indicate which spatially local points
are used during a single given KPConv convolution operation. The fourth-row Figure 6
depicts the set of point neighbors (yellow) for a single point (green) for a single sample
passed through the HSD-L3D network. Collectively these pre-computed data structures
may be referred to as a graph pyramid.

Figure 6. A graph pyramid from a single multimodal sample passed through the HSD-L3D network.
(Top 3 Rows) The structural HSPC, lidar, and canonical point locations at each layer of the HSD-L3D
network. As described in Section 2.2.2, the central canonical multimodal point locations are the com-
bination of unimodal point locations at each respective depth of the network streams. (Fourth Row)
A visual representation of the neighbor indices (yellow points) with respect to a single point (green)
during a single KPConv convolution operation.

Calculation of a graph pyramid is straightforward in the case of a unimodal KPConv-
based network. However, in the case of a multimodal network such as HSD-L3D, a two-step
process must be implemented to ensure proper “mixing” of modalities during the sub-
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sampling and neighbor index calculations. We completed such a method as follows. In the
first step, the input HSPC, and lidar point cloud points were combined into a single data
structure to form the canonical set of point locations, and a graph pyramid is created
(second row of Figure 6). During the creation of this graph pyramid, the original modalities
of individual points were recorded, but the points were allowed to mix. That is, the grid-
subsampling operation is not modality-aware and would subsample a mixed-modality
set of points into a single new point location for any given grid cell. Further, the neighbor
selection operation is also not modality-aware and will select neighbors representing a
mixed-modality set of points. In the second step of the process, the recorded originating
modality of each point at each depth of the graph pyramid was used to decompose it into
two graph pyramids representing the HSPC and lidar graph pyramids for the given input
(first and third row of Figure 6).

The resulting multimodal graph pyramid is made up of three distinct graph pyramids,
one for each of the unimodal inputs and one for the set of canonical point locations they
create. Again, the calculation of the multimodal graph pyramid in this manner is necessary
to ensure mixing between the unimodal inputs. Had the unimodal graph pyramids been
created first and then combined, the down-sampling, up-sampling, and neighbor indices
would only describe relationships between points within the same modality. Thus, KPConv
convolution operations would never mix features from opposite modalities within the
central fusion stream of the network to generate two multimodal feature sets. For the same
reason, this is why a multimodal network ingesting the spectral HSPC and lidar point
cloud data is not possible. The grid subsampling operation would rarely find/produce
grid cells with a mixed modality of points because the spectral HSPC points have Z = 0
while the lidar points have some inherent height.

2.2.4. Network Training

We utilized the weighted categorical cross-entropy loss described in [8] for all network
optimization. This loss function implements logic to ignore the contribution of unlabeled
pixels and points to the calculated loss via masking. Masking was implemented by altering
the network class predictions prior to loss calculation by setting the correct prediction
for all truly unlabeled pixels or points. Class weights within this loss were calculated as
1.0 minus the total percentage of their representation in the training set. This weighting
alleviated the substantial class imbalance present in the dataset (Table A2).

The single multimodal network was comprised in part of the unimodal networks H3D-
DSM and L3D themselves. As a result, training of all unimodal networks proceeded prior
to the multimodal network. This allowed the learned parameters of the unimodal networks
to be utilized during the training of the multimodal network as the initialization param-
eters for the hyperspectral and lidar stream of the network. Training of the multimodal
network then proceeded by providing multimodal samples to the unimodal input streams,
performing a forward pass, accruing gradients, and back-propagating through all reachable
layers of the network. That is, the decoding sections of the unimodal network streams have
no connections to the central fusion stream, and as a result, weight updates from the loss
result at the central fusion stream’s prediction never backpropagate through them.

Sample batching for all networks was performed via the technique described in [19].
This technique stacks input samples along both the point and feature dimensions (es-
sentially localizing all samples in a batch to the same Euclidean space) and relies on the
precomputed neighbor indices to identify each sample during training. The total number of
points in each of the input samples was also calibrated via the method presented in [8] orig-
inally described in [19]. That is, an empirically determined upper bound of 340,000 points
per batch was identified, which allows for approximately 16-point cloud samples per lidar
batch, 64 point cloud samples per hyperspectral (both the spectral and structural HSPC)
batch, and 12 point cloud samples per multimodal batch. These limits were set due to
hardware memory limitations.
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While the described architectures could ingest entire point cloud samples, they would
be limited by small batch size. In order to ensure a larger variability in samples through
the KPConv-based networks the point clouds in the multimodal (Figure 3) samples were
further sampled. This sampling operation selects a random point within the point cloud,
selects a predefined number of points within a rectangular XY region, and uses this as a
network input sample. In the case that not enough points are reachable from the randomly
selected point, a new point is selected until a sample is found. For the lidar point cloud
modality, the number of points was set to 21,250, and for the HSPC modalities, 5300. These
values resulted in approximately 1/4 of the entire multimodal sample (Figure 3) being
within the generated sample.

All networks were trained for a maximum of 150 epochs, an SGD optimizer with
0.98 momenta, a 1 × 10−2 learning rate, a cosine decay based learning rate scheduler,
1 × 10−3 weight decay, and gradient norm clipping. During all network training sessions,
a monitor was implemented to save the model with the best-observed validation accuracy.
After training was complete, the model with the highest validation accuracy was selected
for testing and results reporting. All networks were trained on an Nvidia RTX A6000
with 48 GB of VRAM under the PyTorch [24] framework with heavy reliance on the
PyKeOps [25], easy-kpconv [26], and vision3d-engine [27] libraries. An overview of various
model parameters, hyperparameters, and computational requirements is presented in
Table 2.

Table 2. Selected subset of model characteristics and computational requirements. The slight
differences between H3D-Flat and H3D-DSM epoch time and memory usage are due to the different
sizes of neighbors used during convolution. The reported value of HSD-L3D’s model parameter
count includes the decoding sections of the unimodal network streams.

Architecture # Params Max Epoch Opt/LR Batch Size Epoch Time VRAM Mean

L3D 24.3 M 150 SGD/1 × 10−2 16 8.8 min 29 GB
H3D-Flat 24.5 M 150 SGD/1 × 10−2 64 7.2 min 21 GB
H3D-DSM 24.5 M 150 SGD/1 × 10−2 64 6.9 min 20 GB
HSD-L3D 125.7 M 150 SGD/1 × 10−2 12 13.5 min 41 GB

2.2.5. Post-Processing

As noted in Section 2.2.1 the L3D network predicts a semantic point cloud localized to
the lidar point locations, H3D-Flat and H3D-DSM predict semantic point clouds localized to
the HSPC point locations (same points, differing Z values), and HSD-L3D predicts a seman-
tic point cloud localized to both the lidar and hyperspectral point locations. To allow for a
fair comparison between all networks presented along with previous works ([21,22,28,29])
the semantic point predictions for the lidar point locations had to be projected into a pixel
representation. The semantic point predictions for the HSPC based/localized predictions
do not need to be altered because each point has a bijective mapping between pixel locations
in the original hyperspectral image. Thus, we utilize the same method described in [8] to
project the semantic point label predictions from the L3D network and the lidar prediction
component of HSD-L3D network. That is, reversing the operation of labeling the point
cloud in the first place as described in Section 2.1.1. Finally, to combine the predictions for
each of the multimodal samples back into the original unsliced GRSS18 image format the
same method as described in [8] is used; selecting the highest softmax confidence value for
all pixel locations.

3. Results

The combined, but not yet projected, test set predictions for all networks are provided
in Figure 7. The metrics and statistics calculated from these predictions are provided in
Table 3. It is important to note that the values presented in this table are not directly
comparable unless they originated from the same input point cloud modality. This is
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because predictions made against, for example, the lidar point cloud modality are not
localized to the same set of points as the HSPC modality. A caveat to this is that all HSPC
predictions are directly comparable because they share the same set of point locations
albeit with different Z values. In addition, note, in Table 3, the statistics for HSD-L3D are
presented against the canonical point locations, lidar point locations, and structural HSPC
point locations. This is possible because the canonical set of point locations can easily be
decomposed into the lidar and hyperspectral contributions as a result of the pre-computed
graph pyramid input (Section 2.2.3). We present these metrics and statistics to illustrate the
models’ performance against their input, in the proceeding paragraphs, we also present
their projected predictions for inter-model comparison.

Figure 7. Combined test sample predictions over the entire test set area for all models. Note,
predictions are shown against the point locations against which they were generated; denoted in
parenthesis in subplot naming. (Row 1, Column 1) Ground truth point cloud labels for the structural
HSPC. (Row 1, Column 2) Ground truth point cloud labels for the lidar modality. (Row 2, Column 1)
L3D prediction. (Row 3, Column 1) H3D-Flat prediction. (Row 4, Column 1) H3D-DSM prediction.
(Row 2, Column 2) HSD-L3D prediction. (Row 3, Column 2) Structural HSPC component of HSD-
L3D prediction. (Row 4, Column 2) Lidar point cloud component HSD-L3D prediction.

First, we compare the two predictions from L3D and HSD-L3D (Lidar) against the
lidar point cloud locations. The marginal balanced and pixel accuracy improvements of
the HSD-L3D (Lidar) prediction over the L3D prediction provides weak evidence that
the incorporation of the structural HSPC information within the multimodal network is
effective. Further, we note the differences in the per-class accuracy against the vehicle class.
The L3D network moderately outperformed the HSD-L3D, and thus, we recognize that the
incorporation of the structural point cloud information within the multimodal network,
while effective overall, could introduce some ambiguity toward specific classes. In this case,
a correct prediction on the vehicle class may be the most reliant on structural information
(in relation to the other classes) for proper prediction given the highly variable spectral
information vehicles present.

We may also compare the three predictions from the H3D-Flat, H3D-DSM, and HSD-
L3D (HSPC) models against the HSPC point locations. The overall under-performance of
the H3D-Flat network is directly attributed to the 2D nature of the spectral HSPC input.
This modality does not provide structural information and results in many of the KPConv
kernels/filters going under-utilized. Despite this, the model was still able to produce non-
trivial performance. Interestingly, the rooftop parking garage structure on the left-hand
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side of the test area (top left subplot of Figure 8), which is subjectively incorrectly labeled
entirely as the building class, was best segmented by this model (which in turn negatively
affected its reported accuracy).

Table 3. Statistics and metrics of combined test sample predictions for all models. Note, predictions
are not directly comparable unless they were performed against the same set of point locations.
For example, the L3D and HSD-L3D (Lidar) columns are comparable, while the L3D and H3D-Flat
predictions are not. A caveat to this is that all HSPC predictions are directly comparable; they
share the same set of point locations albeit with different Z values. Further note, as described in
Section 2.2.1, L3D was originally described in [8] but retrained in this work provided it is a sub-part
of the HSD-L3D network. The best results per point location type are highlighted in bold. The class
distribution percentage within the test set is provided beside each class label.

L3D HSD-L3D (Lidar) H3D-Flat H3D-DSM HSD-L3D (HSPC) HSD-L3D (Canonical)

Point Locations Lidar Lidar HSPC HSPC HSPC Canonical

Class Accuracy
building (57.4%) 0.996 0.958 0.735 0.960 0.960 0.958
vehicle path (15.7%) 0.861 0.896 0.861 0.952 0.908 0.897
human path (17.9%) 0.528 0.431 0.271 0.386 0.415 0.430
foliage (6.6%) 0.413 0.635 0.911 0.723 0.550 0.629
vehicle (2.4%) 0.928 0.841 0.241 0.767 0.796 0.837

Statistics
Precision 0.8218 0.7636 0.6881 0.8396 0.7679 0.7640
Recall 0.7451 0.7520 0.6038 0.7579 0.7256 0.7500
F-measure 0.7632 0.7461 0.6009 0.7848 0.7317 0.7452
IoU 0.6461 0.6135 0.4676 0.6695 0.5960 0.6123
Kappa 0.7060 0.7478 0.6017 0.7875 0.7252 0.7462

Balanced Accuracy 0.7451 0.7520 0.6038 0.7579 0.7256 0.7500
Pixel Accuracy 0.8360 0.8536 0.7442 0.8744 0.8385 0.8525

The moderate increase in balanced and pixel accuracy improvements of the H3D-DSM
network over the multimodal network is mainly attributed to the greatly increased training
cost of the multimodal network. The H3D-DSM, and all other unimodal networks, are
smaller architectures in terms of both number of parameters and input point cloud size.
As a result, they are faster to train and can be fed much larger batch sizes. This allows for
a greater number of epochs and sample variety per unit of computational cost. Further,
the structural HSPC itself is already a multimodal data product and provides a subjectively
reasonable and pre-defined association of hyperspectral and lidar features in the spatial
domain. As a result, this model may have been able to rely on this fact, whereas the
multimodal network had to learn a useful mapping between its input unimodal feature sets.

The combined and projected (Section 2.2.5) test set predictions for all networks are
provided in Figure 8. The metrics and statistics from these predictions are provided in
Table 4. This table further provides the results of the H2D unimodal traditional pixel CNN
network ingesting hyperspectral images and the H2D_L2D multimodal traditional pixel
CNN network ingesting hyperspectral images and lidar DSM data originally described in
Decker et al. [8]. In the figure and table, all predictions are directly comparable because
they are all localized to the same label pixel locations. Note, the metrics and statistics of
the HSPC ingesting models did not change because of the bijective mapping between the
HSPC point locations and label pixel locations. We also comment on the overall decrease in
the reported statistics for non-HSPC-based models (L3D, HSD-L3D (Lidar), and HSD-L3D
(Canonical)). This is a result of the in-exacting process of projecting and interpolating the
predicted labels localized to their respective point locations to a regularly gridded and
smaller set of pixel locations. The largest inaccuracy is in the selection of a label from a
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set of labels that fall within a single pixel location. This phenomenon is closely related to
issues with generating the lidar point cloud labels in the first place (Section 2.1.1).

Figure 8. Combined test sample predictions over the entire test set area for all models. Note, all
predictions have been projected into the XY plane and localized to the set of pixel locations of
the pixel labels as described in Section 2.2.5. As a result, all predictions are directly comparable.
(Row 1, Column 1) False color hyperspectral image of the labeled test set area. (Row 1, Column 2)
Ground truth pixel labels. (Row 2, Column 1) L3D prediction. (Row 3, Column 1) H3D-Flat
prediction. (Row 4, Column 1) H3D-DSM prediction. (Row 2, Column 2) HSD-L3D prediction.
(Row 3, Column 2) Structural HSPC component of HSD-L3D prediction. (Row 4, Column 2) Lidar
point cloud component HSD-L3D prediction.

First, we compare the results of the unimodal network predictions L3D, H3D-Flat,
H3D-DSM, and H2D [8]; note that Table 4 uses the shorthand naming for H3D-Flat (HSF)
and H3D-DSM (HSD). In terms of both balanced and pixel accuracy, the HSD network
outperforms all other unimodal networks. We attribute this to the same reasoning presented
for H3D-DSM’s performance when reviewing the unprojected predictions, the structural
HSPC itself is already a multimodal data product and provides a subjectively reasonable
and pre-defined association of hyperspectral and lidar features. Further, all other unimodal
networks have no source of multimodal information. The structural HSPC provides some
structural information by definition, and thus provides multimodal information. If we then
compare all other unimodal networks, we find that the H2D [8] outperforms all others in
terms of balanced and pixel accuracy.

H2D weakly outperforms L3D, from this, we have moderate evidence that the amount
of predictive information contained within the hyperspectral and lidar modalities are
approximately equal. This is further evidence and expounded upon by comparing the
per-class accuracies of the L3D and H2D networks to all other results. We find that the
L3D and H2D networks collectively contain the highest number of best results for per-class
accuracies. As may be assumed the L3D network ranks highest for more structurally
defined classes like the building and vehicle class, while the H2D network ranks highest
for the more spectrally defined classes human path and foliage.

Broadening the scope of the comparison to include the decomposed HSD-L3D lidar
and hyperspectral components, we find the same performance rankings hold. These results
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also present further evidence of the approximately equal predictive power of the two
modalities. This can be seen in the closely matched balanced and pixel accuracy results of
the HSD-L3D (Lidar) and HSD-L3D (HSPC) models. Had one modality provided richer
information from which the segmentations could be predicted, then we would expect the
contribution to the overall performance from the components of a multimodal model like
HSD-L3D to be further separated.

Table 4. Statistics and metrics of the combined test sample predictions after projection to the XY plane
and ground truth label pixel locations. All values are directly comparable. Further, the predictions
originally made against the HSPC modalities did not change as a result of the method of HSPC
creation; pixel XY values are equal to point XY values for all HSPC representations. The first six
columns represent models trained in this work. The final four columns represent previous work.
The final column represents the translated [8] (accounting for superclass conversion; Section 2.1.1)
results of Li et al. [29] against the GRSS18 dataset. We rely on the short-hand naming of the H3D-Flat
(HSF) and H3D-DSM (HSD) naming in the table for spacing. The best results are highlighted in bold.

HSD-L3D
L3D HSF HSD Lidar Hyper Canon H2D [8] H2D_L2D [8] H2D_L3D [8] Li [29]

Class Accuracy
building 0.997 0.735 0.960 0.959 0.960 0.959 0.918 0.992 0.897 0.899
vehicle path 0.855 0.861 0.952 0.891 0.908 0.877 0.695 0.840 0.863 0.720
human path 0.434 0.271 0.386 0.347 0.415 0.308 0.482 0.472 0.459 0.508
foliage 0.335 0.911 0.723 0.565 0.550 0.561 0.932 0.856 0.934 0.860
vehicle 0.876 0.241 0.767 0.758 0.796 0.756 0.415 0.946 0.385 0.863

Statistics
Precision 0.8198 0.6881 0.8396 0.7729 0.7679 0.7652 0.825 0.899 0.854 -
Recall 0.6994 0.6038 0.7579 0.7040 0.7256 0.6922 0.831 0.897 0.844 -
F-measure 0.7277 0.6009 0.7848 0.7178 0.7317 0.7064 0.825 0.894 0.842 -
IoU 0.6039 0.4676 0.6695 0.5799 0.5960 0.5686 0.720 0.830 0.745 -
Kappa 0.6742 0.6017 0.7875 0.7079 0.7252 0.6959 0.730 0.838 0.756 -

Balanced Acc 0.6994 0.6038 0.7579 0.7040 0.7256 0.6922 0.688 0.821 0.708 0.768
Pixel Accuracy 0.8078 0.7442 0.8744 0.8214 0.8385 0.8149 0.831 0.897 0.844 0.819

A holistic review of the multimodal network performance incorporates the results
of the H2D_L2D and H2D_L3D from Decker et al. With these results, we find that the
H2D_L2D network moderately outperformed all other multimodal networks described
here and within Decker et al. We attribute this result to the overall difficulty in creating
and training mixed modality fusion-based neural networks specifically fusing dissimilar
modalities and the computational cost of training KPConv-based networks. When expand-
ing past the result of this work and [8], using the superclass translated result presented in
Table 3 of [8], we find that all three multimodal networks described here and in [8] provide
competitive performance to existing approaches.

4. Discussion

The fusion of dissimilar data modalities in neural networks presents a significant
challenge. Striking a balance between adapting data representations to fit a network archi-
tecture, as demonstrated in this work, and adjusting a network architecture to accommodate
data representation [8] is crucial. While the fusion of hyperspectral images with lidar DSM
data has been extensively studied, we have identified and explored alternative balancing
points. Our findings reveal that these points exist, offer competitive results, and have the
potential to achieve state-of-the-art performance in semantic segmentation of multimodal
hyperspectral and lidar remote sensing datasets with further research.

It is important to recognize the inherent limitations of our methods and contributions.
While the results yielded by our newly introduced HSPC representations and the KPConv-
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based fusion network are promising, certain challenges are present. The first limitation
pertains to the adaptation of data representations to fit the network architecture. This might
inadvertently result in the loss of some critical details from the original data. In this work,
this issue surfaced in the context of hyperspectral pixels that contained multiple lidar points
within their vertical column. These were translated into hyperspectral points based on
the average height of the lidar points, leading to an inherent displacement. Consequently,
the resultant hyperspectral point lay at an indeterminate vertical distance away from the
exact point from which its spectrum was initially received.

The second limitation relates to the computational intensity of our proposed network
architecture. While the unimodal KPConv-based networks can be accommodated by less
powerful, consumer-grade hardware, (albeit at the cost of increased processing time),
the more resource-intensive fusion network poses a greater challenge. Its requirements
often exceed the computational resources, particularly GPU VRAM, readily available to
an individual researcher. These issues represent crucial areas for further refinement in
future research.

Despite these limitations, we envision the following path toward this goal of contin-
ued research:

1. Harness the power of LiDAR data in its native, information-rich point cloud format.
Over the past decade, remarkable progress has been made in point cloud processing
networks research [30], with novel processing methodologies and network architec-
tures emerging at a rapid pace. This progress should be extended to the field of
multimodal remote sensing. The encouraging results of the L3D network further
support this notion, as the point cloud processing-based network L3D (trained in
this work) achieves a 9% higher pixel accuracy than the lidar DSM network L2D.
Continued exploration of point cloud processing methodologies promises to yield
enhanced performance.

2. Employ and integrate advanced neural network architectures and components. This
work has primarily focused on traditional pixel and point-based convolutions. How-
ever, more sophisticated pixel and point convolution-based architectures hold the
potential to improve performance. For instance, pixel-based convolution can be en-
hanced with residual layers or attention mechanisms, which are commonly employed
in practice. Similarly, KPConv can be augmented with residual layers or deformable
kernels. Another potential modification for KPConv, not yet implemented, is a 2D
mode of operation. This would facilitate the processing of images (after being con-
verted into spectral point clouds as described in Section 2.1.2) and make full use of
the kernel points set, requiring only structural information for point feature fusion to
co-locate features spatially.

In conclusion, this work has introduced two HSPC representations and a novel point
convolution-based composite fusion neural network that leverages these HSPC representa-
tions. Our results demonstrate the efficacy of these representations in both unimodal and
multimodal networks and show that the proposed multimodal network delivers competi-
tive performance compared to previous research. This work represents a significant stride
towards the development of fusion neural networks capable of processing both native
image type data and point cloud data, specifically in the realm of multimodal remote sens-
ing. We recognize the limitations associated with point convolution neural networks like
KPConv, including their substantial computational cost and added complexity. However,
these challenges are difficult to overcome given the inherently large size and dimensionality
of point cloud data. In light of these findings, our work paves the way for innovative
approaches to multimodal remote sensing exploitation, unlocking new possibilities for
enhanced data analysis and interpretation.
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Appendix A

Appendix A.1. Superclass Generation from GRSS18 Classes

Table A1. GRSS18 class labeling scheme statistics and superclass labeling assignment.

GRSS18 Class Pixel Count Percentage of Total Superclass Assignment

unlabeled 3,712,226 64.773 unlabeled
non-residential buildings 894,769 15.612 buildings
major thoroughfares 185,438 3.236 vehicle path
roads 183,283 3.198 vehicle path
residential buildings 158,995 2.774 buildings
sidewalks 136,035 2.374 human path
stressed grass 130,008 2.268 foliage
evergreen trees 54,322 0.948 foliage
paved parking lots 45,932 0.801 vehicle path
highways 39,438 0.688 vehicle path
healthy grass 39,196 0.684 foliage
railways 27,748 0.484 vehicle path
stadium seats 27,296 0.476 unlabeled
cars 26,289 0.459 vehicle
trains 21,479 0.375 vehicle
deciduous trees 20,172 0.352 foliage
bare earth 18,064 0.315 foliage
crosswalks 6059 0.106 human path
artificial turf 2736 0.048 unlabeled
water 1064 0.019 unlabeled
unpaved parking lots 587 0.010 vehicle path

Total 5,731,136

Table A2. Superclass statistics over total imaged area and within training, validation, and test sets.

Superclass Pixel Count Percentage of Total Percentage of TVT Sets

unlabeled 3,743,322 65.316 66.75, 67.33, 56.37
building 1,053,764 18.387 18.45, 11.69, 25.06
vehicle path 482,426 8.418 8.73, 8.52, 6.83
foliage 261,762 4.567 2.05, 4.05, 2.87
human path 142,094 2.479 3.31, 7.18, 7.83
vehicle 47,768 0.833 0.7, 1.23, 1.04

https://hyperspectral.ee.uh.edu/?page_id=1075
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Figure A1. Training, validation, and test set split of the semantic pixel map. Yellow lines denote set
boundaries. The top left section represents the training set. The bottom right section denotes the
testing set. The center section denotes the validation set.

Appendix A.2. Model Training Histories

Figure A2. All model training and validation loss and pixel accuracy histories. Blue lines show
training values and orange lines show validation values. Solid lines show smoothed values and faded
lines show actual values.
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